On calibrations for Lawson's cones
Rendiconti del Seminario Matematico della Università di Padova, Tome 111 (2004), pp. 55-70.
@article{RSMUP_2004__111__55_0,
     author = {Davini, Andrea},
     title = {On calibrations for {Lawson's} cones},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {55--70},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {111},
     year = {2004},
     mrnumber = {2076732},
     zbl = {1127.53047},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_2004__111__55_0/}
}
TY  - JOUR
AU  - Davini, Andrea
TI  - On calibrations for Lawson's cones
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2004
SP  - 55
EP  - 70
VL  - 111
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_2004__111__55_0/
LA  - en
ID  - RSMUP_2004__111__55_0
ER  - 
%0 Journal Article
%A Davini, Andrea
%T On calibrations for Lawson's cones
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2004
%P 55-70
%V 111
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_2004__111__55_0/
%G en
%F RSMUP_2004__111__55_0
Davini, Andrea. On calibrations for Lawson's cones. Rendiconti del Seminario Matematico della Università di Padova, Tome 111 (2004), pp. 55-70. http://www.numdam.org/item/RSMUP_2004__111__55_0/

[1] G. Alberti - L. Ambrosio - X. Cabré, On a long-standing conjecture of E. De Giorgi: Symmetry in 3D for general nonlinearities and a local minimality property, Acta Appl. Math., 65, No. 1-3 (2001), pp. 9-33. | MR | Zbl

[2] G. Alberti - G. Dal Maso - G. Bouchitté, The calibration method for the Munford-Shah functional, Calc. Var. Partial Differential Equations, 16, No. 3 (2003), pp. 299-333. | MR | Zbl

[3] D. Benarros - M. Miranda, Lawson cones and the Bernstein theorem, Advances in geometric analysis and continuum mechanics (Stanford, CA, 1993), pp. 44-56. | MR | Zbl

[4] E. Bombieri - E. De Giorgi - E. Giusti, Minimal cones and the Bernstein problem, Invent. Math., 7 (1969), pp. 243-268. | MR | Zbl

[5] P. Concus - M. Miranda, MACSYMA and minimal surfaces, Proc. of Symposia in Pure Mathematics, by the Amer. Math. Soc., 44(1986), pp. 163-169. | MR

[6] L. C. Evans - R. F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, New York, 1992. | MR | Zbl

[7] G. Lawlor - F. Morgan, Paired calibrations applied to soap films, immiscible fluids, and surfaces or networks minimizing other norms, Pac. J. Math., 166, No. 1 (1994), pp. 55-83. | MR | Zbl

[8] H. B. Lawson Jr., The equivariant Plateau problem and interior regularity, Trans. Amer. Math. Soc., 173 (1972), pp. 231-249. | MR | Zbl

[9] U. Massari - M. Miranda, A remark on minimal cones, in Boll. Un. Mat. Ital. (6), 2-A (1983), pp. 123-125. | MR | Zbl

[10] M. Miranda, Grafici minimi completi, Ann. Univ. Ferrara, 23 (1977), pp. 269-272. | MR | Zbl

[11] F. Morgan, Calibrations and new singularities in area-minimizing surfaces: A survey, Variational methods, Proc. Conf. (Paris/Fr. 1988), Prog. Nonlinear Differ. Equ. Appl., 4 (1990), pp. 329-342. | MR | Zbl

[12] P. Simoes, A class of minimal cones in Rn , nF8, that minimize area, Ph. D. Thesis, University of California, (Berkeley, CA, 1973).

[13] J. Simons, Minimal varieties in Riemannian manifolds, Ann. Math., 88 (1968), pp. 62-105. | MR | Zbl