@article{RSMUP_2003__110__1_0, author = {Chabrowski, J. and Yang, Jianfu}, title = {Multiple solutions of a nonlinear elliptic equation involving {Neumann} conditions and a critical {Sobolev} exponent}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {1--24}, publisher = {Seminario Matematico of the University of Padua}, volume = {110}, year = {2003}, mrnumber = {2032999}, zbl = {1115.35042}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2003__110__1_0/} }
TY - JOUR AU - Chabrowski, J. AU - Yang, Jianfu TI - Multiple solutions of a nonlinear elliptic equation involving Neumann conditions and a critical Sobolev exponent JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2003 SP - 1 EP - 24 VL - 110 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2003__110__1_0/ LA - en ID - RSMUP_2003__110__1_0 ER -
%0 Journal Article %A Chabrowski, J. %A Yang, Jianfu %T Multiple solutions of a nonlinear elliptic equation involving Neumann conditions and a critical Sobolev exponent %J Rendiconti del Seminario Matematico della Università di Padova %D 2003 %P 1-24 %V 110 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2003__110__1_0/ %G en %F RSMUP_2003__110__1_0
Chabrowski, J.; Yang, Jianfu. Multiple solutions of a nonlinear elliptic equation involving Neumann conditions and a critical Sobolev exponent. Rendiconti del Seminario Matematico della Università di Padova, Tome 110 (2003), pp. 1-24. http://www.numdam.org/item/RSMUP_2003__110__1_0/
[1] The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honor of G. Prodi, Scuola Norm. Sup. Pisa (1991), pp. 9-25. | MR | Zbl
- ,[2] Effect of geometry and topology of the boundary in critical Neumann problem, J. Reine Angew. Math., 456 (1994), pp. 1-18. | MR | Zbl
- ,[3] The role of the mean curvature in a semilinear Neumann problem involving critical exponent, Comm. in P.D.E., 20, No. 3 and 4 (1995), pp. 591-631. | MR | Zbl
- - ,[4] Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal., 113 (1993), pp. 318-350. | MR | Zbl
- - ,[5] Characterization of concentration points and LQ -estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent, Diff. Int. Eq., 8 (1995), pp. 31-68. | Zbl
- - ,[6] Critical Sobolev exponent problem in RN (NF4) with Neumann boundary condition, Proc. Indian Acad. Sci., 100 (1990), pp. 275-284. | MR | Zbl
- ,[7] Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983), pp. 437-477. | MR | Zbl
- ,[8] On the nonlinear Neumann problem with indefinite weight and Sobolev critical nonlinearity, Bull. Pol. Acad. Sc., 50 (3) (2002), pp. 323-333. | MR
,[9] Mean curvature and least energy solutions for the critical Neumann problem with weight, B.U.M.I. B, 5 (8) (2002), pp. 715-733. | MR | Zbl
,[10] Least energy solutions of a critical Neumann problem with weight, Calc. Var., 15 (2002), pp. 121-131. | MR
- ,[11] Positive solutions for some nonlinear elliptic equations with critical Sobolev exponents, Commun. Pure Appl. Math., 40 (1987), pp. 623-657. | MR | Zbl
,[12] Critical superlinear AmbrosettiProdi problems, TMNA, 14 (1999), pp. 50-80. | Zbl
,[13] Elliptic partial differential equations of second order, Springer-Verlag, Berlin (1983) (second edition). | MR | Zbl
- ,[14] The concentration-compactness principle in the calculus of variations, The limit case, Revista Math. Iberoamericana, 1, No. 1 and No. 2 (1985), pp. 145-201 and pp. 45-120. | MR
,[15] Singular behavior of least energy solutions of a semilinear Neumann problem involving critical Sobolev exponent, Duke Math. J., 67 (1992), pp. 1-20. | MR | Zbl
- - ,[16] On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991), pp. 819-851. | MR | Zbl
- ,[17] Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Diff. Eq., 93 (1991), 283-310. | MR | Zbl
,[18] Remarks on a nonlinear Neumann problem with critical exponent, Houston J. Math., 20, No. 4 (1994), pp. 671-694. | MR | Zbl
,[19] The effect of the domain geometry on number of positive solutions of Neumann problems with critical exponents, Diff. Int. Eq., 8, No. 6 (1995), pp. 1533-1554. | MR | Zbl
,[20] Min-max Theorems, Boston 1996, Birkhäuser.
,