@article{RSMUP_2003__109__217_0, author = {Corner, A. L. S. and G\"obel, R\"udiger}, title = {Small almost free modules with prescribed topological endomorphism rings}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {217--234}, publisher = {Seminario Matematico of the University of Padua}, volume = {109}, year = {2003}, mrnumber = {1997988}, zbl = {1148.20308}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2003__109__217_0/} }
TY - JOUR AU - Corner, A. L. S. AU - Göbel, Rüdiger TI - Small almost free modules with prescribed topological endomorphism rings JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2003 SP - 217 EP - 234 VL - 109 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2003__109__217_0/ LA - en ID - RSMUP_2003__109__217_0 ER -
%0 Journal Article %A Corner, A. L. S. %A Göbel, Rüdiger %T Small almost free modules with prescribed topological endomorphism rings %J Rendiconti del Seminario Matematico della Università di Padova %D 2003 %P 217-234 %V 109 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2003__109__217_0/ %G en %F RSMUP_2003__109__217_0
Corner, A. L. S.; Göbel, Rüdiger. Small almost free modules with prescribed topological endomorphism rings. Rendiconti del Seminario Matematico della Università di Padova, Tome 109 (2003), pp. 217-234. http://www.numdam.org/item/RSMUP_2003__109__217_0/
[1] Abelian groups without elements of finite order, Duke Math. J., 3 (1937), pp. 68-122. | JFM | MR
,[2] Sur des décompositions directes paradoxales de groupes abéliens sans torsion, Abelian Group Theory, Proceedings, Honolulu 1982/83, Lecture Notes in Mathematics 1006 (Springer, Berlin, 1983), pp. 358-361. | MR | Zbl
,[3] Every countable reduced torsion-free ring is an endomorphisms ring, Proc. London Math. Soc., 13 (1963), pp. 687-710. | MR | Zbl
,[4] Endomorphisms rings of torsion-free abelian groups, Proceedings of the International Conference on the Theory of Groups, Canberra 1965 (Gordon and Breach, New York, 1967), pp. 59-69. | Zbl
,[5] Additive categories and a theorem of W. G. Leavitt, Bull. Amer. Math. Soc., 75 (1969), pp. 78-82. | MR | Zbl
,[6] On the existence of very decomposable abelian groups, Abelian Group Theory, Proceedings, Honolulu 1982/83, Lecture Notes in Mathematics 1006 (Springer, Berlin, 1983), pp. 354-357. | MR
,[7] Prescribing endomorphism algebras, a unified treatment, Proc. London Math. Soc., 50 (1985), pp. 447-479. | MR | Zbl
- ,[8] Every cotorsion-free ring is an endomorphism ring, Proc. London Math. Soc. (3), 45 (1982), pp. 319-336. | MR | Zbl
- ,[9] Every cotorsion-free algebra is an endomorphism algebra, Math. Zeitschr., 181 (1982), pp. 451-470. | MR | Zbl
- ,[10] Set theoretic methods in homological algebra and abelian groups, Les Presses de l'Université de Montréal, Montreal 1980. | MR | Zbl
,[11] Cardinal restrictions for preradicals, Abelian Group Theory, Contemporary Math. 87, Providence, 1989, pp. 277-283. | MR | Zbl
,[12] Almost Free Modules, Set-theoretic Methods, NorthHolland, 1990. | MR | Zbl
- ,[13] Abelian Groups, Vol. I and II, Academic Press, 1970 and 1973.
,[14] Some combinatorial principles for solving algebraic problems, Infinite length modules, Trends in Mathematics, Birkhäuser Verlag, Basel, 2000, pp. 107-127. | MR | Zbl
,[15] Indecomposable almost free modules-the local case, Canadian J. Math., 50 (4) (1998), pp. 719-738. | MR | Zbl
- ,[16] Endomorphism rings of modules whose cardinality is cofinal to v, Abelian groups, module theory, and topology, Marcel Dekker, New York, 1998, pp. 235-248. | MR | Zbl
- ,[17] P GRIFFITH, ]n-free abelian groups, Quart. J. Math. (2), 23 (72), pp. 417-425. | MR | Zbl
[18] Set theory, Academic Press, New York, 1978. | MR | Zbl
,[19] On uncountable abelian groups, Israel J. Math., 32 (1979), pp. 311-330. | MR | Zbl
,[20] On endo-rigid strongly ]1-free abelian groups in ]1 , Israel J. Math., 40 (1981), pp. 291-295. | MR | Zbl
,[21] A combinatorial theorem and endomorphism rings of abelian groups II, Abelian Groups and Modules (R. Göbel, C. Metelli, A. Orsatti and L. Salce, eds.), CISM Courses and Lectures 287, Springer-Verlag, 1984, pp. 37-86. | MR | Zbl
,