@article{RSMUP_2002__107__191_0, author = {Li\c{t}canu, R\u{a}zvan}, title = {Counting {Lam\'e} differential operators}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {191--208}, publisher = {Seminario Matematico of the University of Padua}, volume = {107}, year = {2002}, mrnumber = {1926211}, zbl = {1165.34431}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2002__107__191_0/} }
TY - JOUR AU - Liţcanu, Răzvan TI - Counting Lamé differential operators JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2002 SP - 191 EP - 208 VL - 107 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2002__107__191_0/ LA - en ID - RSMUP_2002__107__191_0 ER -
%0 Journal Article %A Liţcanu, Răzvan %T Counting Lamé differential operators %J Rendiconti del Seminario Matematico della Università di Padova %D 2002 %P 191-208 %V 107 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2002__107__191_0/ %G en %F RSMUP_2002__107__191_0
Liţcanu, Răzvan. Counting Lamé differential operators. Rendiconti del Seminario Matematico della Università di Padova, Tome 107 (2002), pp. 191-208. http://www.numdam.org/item/RSMUP_2002__107__191_0/
[1] On second order differential equations with algebraic solutions, Amer. J. Math., 101 (1979), pp. 42-76. | MR | Zbl
- :[2] On second order linear differential equations on algebraic curves, Amer. J. Math., 102 (1980), pp. 517-535. | MR | Zbl
,[3] On algebraic solutions of Lamé differential equation, J. Differential Equations, 41 (1981), pp. 44-58. | MR | Zbl
,[4] Soluzioni algebriche dell'equazione di Lamé e torsione delle curve ellittiche, Rend. Sem. Mat. Fis. Milano, 57 (1987), pp. 203-213. | Zbl
,[5] On Lamé operators which are pull-backs of hypergeometric ones, Trans. Amer. Math. Soc., 347, No. 8 (1995), pp. 2753-2780. | MR | Zbl
,[6] Ueber lineare Diff., Math. Ann., 12 (1878), pp. 167-179. | EuDML
,[7] Intersections arithmétiques, petits points et morphismes de Belyi, Preprint Università degli Studi di Padova, No. 10, 2001.
,[8] Ueber diejenigem Falle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt., J. Reine Angew. Math., 75, pp. 292-335. | EuDML | JFM
,