@article{RSMUP_2001__106__77_0, author = {Endimioni, G\'erard}, title = {Groups in which certain equations have many solutions}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {77--82}, publisher = {Seminario Matematico of the University of Padua}, volume = {106}, year = {2001}, mrnumber = {1876214}, zbl = {1072.20035}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2001__106__77_0/} }
TY - JOUR AU - Endimioni, Gérard TI - Groups in which certain equations have many solutions JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2001 SP - 77 EP - 82 VL - 106 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2001__106__77_0/ LA - en ID - RSMUP_2001__106__77_0 ER -
%0 Journal Article %A Endimioni, Gérard %T Groups in which certain equations have many solutions %J Rendiconti del Seminario Matematico della Università di Padova %D 2001 %P 77-82 %V 106 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2001__106__77_0/ %G en %F RSMUP_2001__106__77_0
Endimioni, Gérard. Groups in which certain equations have many solutions. Rendiconti del Seminario Matematico della Università di Padova, Tome 106 (2001), pp. 77-82. http://www.numdam.org/item/RSMUP_2001__106__77_0/
[1] Some Engel conditions on infinite subsets of certain groups, Bull. Austral. Math. Soc., 62 (2000), pp. 141-148. | MR | Zbl
,[2] B. TAERI, A condation on a certain variety of groups, Rend. Sem. Mat. Univ. Padova, 104 (2000), pp. 129-134. | EuDML | Numdam | MR | Zbl
-[3] On a combinatortal problem in varieties of groups, Comm. Algebra, 23 (1995), pp. 5297-5307. | MR | Zbl
,[4] M. MAJ - A. H. RHEMTULLA, Infinite groups in a gaven vanety and Ramsey's theorem, Comm. Algebra, 20 (1992), pp. 127-139. | MR | Zbl
-[5] M. MAJ, Finitely generated soluble groups with an Engel condition on infinite subsets, Rend. Sem. Mat. Univ. Padova, 89 (1993), pp. 97-102. | EuDML | Numdam | MR | Zbl
-[6] A problem of Paul Erdos on groups, J. Austral. Math. Soc., 21 (1976), pp. 467-472. | MR | Zbl
,