Some notes to the transport equation and to the Green formula
Rendiconti del Seminario Matematico della Università di Padova, Tome 106 (2001), pp. 65-76.
@article{RSMUP_2001__106__65_0,
     author = {Novo, S\'ebastien and Novotn\'y, Anton{\'\i}n and Pokorn\'y, Milan},
     title = {Some notes to the transport equation and to the {Green} formula},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {65--76},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {106},
     year = {2001},
     mrnumber = {1876213},
     zbl = {02216799},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_2001__106__65_0/}
}
TY  - JOUR
AU  - Novo, Sébastien
AU  - Novotný, Antonín
AU  - Pokorný, Milan
TI  - Some notes to the transport equation and to the Green formula
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2001
SP  - 65
EP  - 76
VL  - 106
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_2001__106__65_0/
LA  - en
ID  - RSMUP_2001__106__65_0
ER  - 
%0 Journal Article
%A Novo, Sébastien
%A Novotný, Antonín
%A Pokorný, Milan
%T Some notes to the transport equation and to the Green formula
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2001
%P 65-76
%V 106
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_2001__106__65_0/
%G en
%F RSMUP_2001__106__65_0
Novo, Sébastien; Novotný, Antonín; Pokorný, Milan. Some notes to the transport equation and to the Green formula. Rendiconti del Seminario Matematico della Università di Padova, Tome 106 (2001), pp. 65-76. http://www.numdam.org/item/RSMUP_2001__106__65_0/

[1] H. Beirão Da Veiga H., Existence results in Sobolev spaces for a stationary transport equation, Ricerche di Mathematica, Vol. in honour of Prof. Miranda (1987), pp. 173-184. | MR | Zbl

[2] R.J. Diperna - P. L. LIONS, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), pp. 511-547. | MR | Zbl

[3] V. Girault - L.R. Scott, Analysis of a two dimensional grade-two fluid model with a tangential boundary condition, Journal des Math. Pures et Appl., 78 (1999), pp. 981-1011. | MR | Zbl

[4] A. Novotný: About the steady transport equation, in: Proceedings of Fifth Winter School at Paseky, Pitman Research Notes in Mathematics (1998), pp. 118-146. | MR | Zbl

[5] J.P. Puel - M.C. Roptin, Lemme de Friedrichs. Théorème de densité résultant du Lemme de Friedrichs, Rapport de stage dirigé par C. Goulaouic, DEA Université de Rennes (1967).