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Volterra Integrodifferential Equations of Parabolic Type
of Higher Order in Time in LP Spaces.

DAVIDE GUIDETTI (*)

0. Introduction.

The aim of this paper is to construct and study evolution operators
(or fundamental solutions) for quite general linear Volterra integrodif-
ferential problems which are parabolic in the sense of Petrovskii in L p
spaces ( 1  p  + oo): we are looking for results applicable to mixed
nonautonomous problems, even of higher order in time, with boundary
conditions which can depend on time and we want to generalize the re-
sults of [6], where differential problems were considered. In our knowl-
edge, the most general results concerning equations of this form in L p
spaces which are available in literature are due to Tanabe (see [12], [13]).
We shall study the problem using methods which are inspired by the
theory of analytic semigroups in Banach spaces and we shall reduce our-
selves to a system of the form

Concerning the construction of an evolution operator for (0.1), we men-
tion [11], where ~A(t) ~ is a family of closed linear densely defined opera-
tors in X which generate an evolution operator U( t , s)} is a

family of closable linear operators with domain D(C(t, s ) ) containing
D(A(s)), satisfying some additional regularity assumptions, 

(*) Indirizzo dell’A.: Dipartimento di Matematica, Piazza di Porta S. Donato 5,
40127 Bologna, Italy. E-mail address: guidetti@dm.unibo.it
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F : [ s , T] 2013~~ is continuous. An evolution operator for (0.1 ) is construct-
ed both in the hyperbolic and in the parabolic case. In this second case
the author employs a series of assumptions introduced by Yagi, which do
not require the independence of D(A(t) ) of t, but some differentiability
in t is needed.

Other authors study the equation (0.1) without constructing evolution
operators. Limiting ourselves to the nonautonomous case, we mention
[3] and [1], where the existence of strict and classical solutions (that is,
solutions of (0.1) in a full sense for t ~ s and for t &#x3E; s respectively) is
studied, under assumptions of Kato-Tanabe type, again requiring some
differentiability in t of A(t). Other papers are devoted to the search of
maximal regularity results and avoid problems of initial data with poor
regularity: among them, [10], and [9]. We quote also [4], where solutions
which are weakly differentiable in time in LP sense are discussed. Final-
ly, we consider the papers [12] and [13]; these papers are concerned with
the following initial-boundary value problem for the linear equation of
higher order in t:

I

Here I ax ) 8j is parabolic in the sense of Petrovskii and, for
j =1, k . ~ m , x ’ , ax ) is a linear differential operator which does not
contain derivatives with respect to t . In [12] only the case of ax )
independent of t is considered. In both papers (0.2) is studied directly,
without reducing it to a system of the first order in time, but, in any case,
following the ideas of [7] and [11]. This requires very strong assumptions
of differentiability with respect to t of the coefficients and a very regular
initial datum (uo, ... , ~L -1 ). In [6] assumptions of differentiability in t of
the coefficients were avoided and natural conditions on the initial data to

get a strict or a classical solution were given (see in particular the fourth
section). Moreover, we could treat cases where the operators 93j contain
derivatives with respect to t.
We pass to describe the content of this paper: in the first section we

consider the problem in the purely differential case and recall the ab-
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stract results of [5] in the particular concrete situation we are consider-
ing. These results were the basis of [6]. We complete them constructing
an evolution operator U( t , s ) for the system of first order in time which
is naturally associated to (0.2) in case C = 0 and deduce some of its prop-
erties. It could be shown that, in the case of homogeneous boundary con-
ditions, part of the results of this section could be obtained also from the
abstract theory of [2]. However in the mentioned paper an evolution op-
erator is not explicitly constructed. Such operator and the variation of
parameter formula are necessary for our approach to the integrodiffer-
ential case.

The second section is devoted to the construction of an evolution op-
erator for an integrodifferential perturbation of the first order differen-
tial system. This perturbation has a kernel which is holder continuous in
(t, s) and a weak singularity on the diagonal is allowed. We observe that
from this point of view our assumptions are more restrictive than, for
example, the assumptions of [1], [3], [9], [10]. However, we continue to
avoid any assumption of differentiability in time of the coefficients and
are able to treat initial data which are in the basic space Eo =

fl (see (1.3)). We introduce a notion of classical sol-
k=0

ution (see 2.3) which is a modification of the notion given in [11] , show
the existence of classical and strict solutions under assumptions which
are similar to those employed in the case of the purely differential prob-
lem (see 2.11 and 2.12) and construct an evolution operator S( t , s).

In the third section we apply the results obtained for the first order
system to general integrodifferential boundary value problems of higher
order in time in L p spaces ( 1  ~  + oo ) obtaining results which are
analogous to those already available in the differential case. Finally, in
3.7 we discuss the representation of solutions in terms of evolution

operators.
We conclude this introduction with some notations we shall use in the

following: if E and F are Banach spaces, we shall indicate with ~(E, F)
the Banach space of linear bounded operators from E to F; we shall write
~(E) if E = F. 1[, E, F, G are Banach spaces and E c F c G, we
shall say that F is of type 0 with respect to E and G if there exists C &#x3E; 0
such that for every x E G

If T &#x3E; 0 , we set
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If X is a topological space and we shall indicate with A the

topological closure of A.
If S~ is an open subset of Rn, we shall indicate with 8Q its boundary.

If is sufficiently regular and x ’ E we shall indicate with 
the tangent space to 8Q in x ’ and with v(x’) the outer normal vector of
lenght 1.

Let g e]0, 1[,!1- ~ 0, X a Banach space, a, b ER, a  b; we set

If A is a map, we shall indicate with D(A) its domain.
We shall identify scalar functions of domain [ a , b ] x A , with a , b E R ,

a  b, and A c R n with corresponding functions of domain [ a , b ] and
values in functional spaces in A.

Finally, we shall indicate with C a positive constant, which may be
different from time to time, even in the same sequence of calculations,
and we are not interested to precise. If C depends on a , ... , we shall

write C( a , ~3 , ...).

1. Evolution operators for differential systems.

We start by recalling the definition of parabolic operator (in the
sense of Petrovskii):

1.1 DEFINITION. Let

with 1 E N, a linear partial diff ’er-
ential operator; we shall say that it is d-parabolic ( d E N ) if

(a) for k = 0 , ... , l the order of x , 3x) is less or equal to dk ;
(b) indicate with x , 3x) the part of order dk of x , ax )

and consider for every (t, x ) E [ 0, T] x S~ the polynomial x , A, i) :=

with 0 and (À, ~) ~ (0, 0).

1.2 One can show that d is necessarily even and x , ax ) =

= (3o(~ x ) never vanishes in [ o , T] x S~ (see for this [6] 1.2); we put 2 m : _
= dl and assume in the following that (~ ( t , x ) =1.
We introduce now the following assumptions (kl)-(k4):
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(k1) Q is an open bounded subset of Rn Lying on one side
of its boundary which is a submanifold of class C 2m and di-
rnension n - 1;

is a linear partial differ-

ential operator with coefficients in C([0, T]; C(Q)), which is d - parabol-
ic, with Ld = 2 rrz; 

1-1

_ 

IG = V

every (t, x ) E [ 0 , T] x Q a polynomial in (~, , ~ ) such that for k =
= 0 , ... , l- 1 x , . ) is a polynomial in ~ of degree at most aj - dk ,
with 2 m - 1 and coefficients of class C([ 0 , T]; (of
course, x , . ) == 0 if 

(k4) (complementing condition) indicate x , . ) the

part of order aj - dk of x , . ) and set

1-i 1

consider the 0. D. E. problem

( gl , ... , gm) E C’; then (1.1) has a unique solution.

Consider the problem

with for + 00 [, and

following notions of classical and strict solution of (1.2) were given:
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1.3 DEFINITION. A classical solution u 0/* (1.2) is use

satis-

fying the last condition in (1.2) and the two first for

A strict solution u of (1.2) is a functions

satisfying the last condition in (1.2) and the two first

We shall employ the following assumption (Ll)-(L4):

(L 1 ) (kl)-(k4) are satisfied;
(L2) the coefficients of ak (t, x , 3x) ( 0 ~ 1~ ~ l) are of class

c,8([O, T]; c(Q» with 0 such that:

the coef-

ficients of belong to

1.4 In [6] the problem (1.2) was previously considered under the fur-
ther assumption

Observe that this condition is always satisfied in the particular (and most
classical) case l =1.

If the assumptions (L1 )-(L4 ) and (k5 ) are satisfied, the most natural
strategy to solve (1.2) is to write it in the form of a system of first order
in time. To this aim, set
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we set, for

Observe that for every . Next, for

~ if we define

Finally, we indicate with y the trace operator on 
Then the fact that u is a classical (strict) solution of (1.2) is equivalent

to the fact that

is a classical (strict) solution of the problem

with F(t) = (0, ... , 0, f (t) ) , = 0, Uo = (uo, ... , ui _ 1 ), in the follow-
ing sense:

1.5 DEFINITION. Let F E C([s, T]; Eo ), for 1 ~ j ~ m let gj E

E C( [s , T]; E,~~ ), Uo E Eo . A classical solution of (1.8) is an element U in
T]; Eo ) n C(] s , T]; E1 ) n C( [ s , T]; Eo ) satisfying the last condi-

tion in (1.8) and the two first conditions for every t z]s , T].
I, f, moreover, Uo E E1, a strict solution of (1.8) is an element U in

C 1 ( [s , T]; Eo ) n C( [s , T]; E1 ) satisfying the last condition in (1.8) and
the two first conditions for every t E [s , T].

So in the remaining part of this section we shall consider the system
(1.8) under the assumptions (L1 )-(L4 ) and (1~5 ). Let ~3  1 such that (L4 )
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is satisfied for We fix 7~]0, p ~[ in such a way
that

and define, for j = 1, ... , m ,

(Recall that 2 m - d = (l-l) d). Then is a space of type

between Eo and El. Finally, we set

and

The following lemma is crucial:

1.6 LEMMA. (See [6], section 2) Under the assumptions (k1 )-(k4 )
and (k5), with the notactions ( 1.3), ( 1.4), ( 1.5), ( 1.6), (1.7), (1.10), ( 1.11 ),
(1.12), consider the problem

with ÀEC, t E [ 0 , T], F E Eo , gjEE!Jjfor j= 1, ... , m .

there exist A &#x3E; 0 and C &#x3E; 0 independent of A, F, 
such that, if Re (~,) ~ 0 and I A I ~ ~l , (1.14) has a unique solution U E E1
and

To summarize, if the assumption (L1 )-(L4 ) and (k5) are all satisfied,
with the notations (1.3), (1.4), (1.5), (1.6), (1.7), (1.10), (1.11), (1.12), (1.13)
and the assumption (1.9), the following conditions are fulfilled:
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( h1 ) Eo , E1 are Banach spaces, with E1 g Eo with continuous and
dense embedding and norms that we shall indicate and 11. 11,
respectively;

( h2 ) for j = 1, ... , m v 1, ... , v m are real numbers in ]0 , 1 [,
are Banach spaces with norms

respectively, such that for every
j =1, ... , m Fv, is of type vj between Eo and E1 and E,,j is continuously
embedded into F; we set

(h5) there exists f3 &#x3E; 0 such that f3 + vj &#x3E; 1 for every j and, for

(h6) y is a linear operator from to Z and for every j =

=l~..,my)~.~~(~Z);
( h7 ) there exists A &#x3E; 0 such that for every À E C with Re (~, ) ~ 0 ,

I À I % ~l , for every t E [ 0 , T] the problem (1.14) has a unique solution

for every and the estimate (1.15) is
available. 

Now, (hl )-(h7 ) were the basic assumptions in [5], where the abstract
problem (1.8) was considered. In fact, in [5] slightly different notations
were used: we wrote 0 0 + ¡.,t j instead of we wrote z instead of y; more-

over, it was assumed that for j = 1, ..., were intermediate between

Eo and E1, which is not necessary for the conclusions we aim to. See also
[6] for other remarks of this type. We observe that in our concrete situ-
ation we have (as already declared in (hl ) ) that El is dense in Eo, which
was not assumed in [5].

Now we revise the results of [5] and use them to construct an evolu-
tion operator for the problem (1.8) using (hl)-(h7).

Given F E Eo and we indicate the solution U of

(1.14) with the notation Also we set, for
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By a simple perturbation argument, one can verify that the problem
(1.14) is solvable for A E C such that ~, ~ ; ll ’ , ~ Arg (À)  (a/2) + ?7, for
some A’, t7 positive depending on C and A and the estimate (1.15) holds
in this larger set, modifying (if necessary) C.

Assumption (h7 ) together with the density of E1 in Eo implies that
A(t) is the infinitesimal generator of an analytic semigroup in Eo (see [5],
corollary 4.5).
We introduce now the following notations: let S E [0, T ], t ~ 0; we

set:

where we have indicated with r the clockwise oriented boundary of
and, more generally, for 

t &#x3E; 0, s E [o, T],

One can verify that, if k  0,

Let ... , t &#x3E; 0 , s E [ o , T ]; we set

and, for 
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It is not difficult to verify, using Cauchy’s theorem, that if k  0,

Moreover,

for every F E Eo ;
for every F E Eo

(V) for every
(VI) for every
(VII) for every

(VIII) for every

(IX) for every
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for every

for every

) for every

PROOF. Standard, using also the expression of T ~k~ ( t , s ) for k  0 .

Concerning (III) and (IV), use [5], corollary 4.5.

1.8 We consider now for certain 9 and !1-E

7and, for every , a function S

, and set, for ,

We have:

1.9 LEMMA. Let U be defined as in (1.22) with the properties de-
clared in 1.8. Then,

for some 3 ’ &#x3E; 0;
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if for every
I for every

where, for 0 ~ s  t ~ T , ... , m ~,

where, for j , k E=- f 1, ... , m 1,

(V) if u = 0 and, for every

PROOF. It follows from [5], lemmata 2.2 and 2.5.
Now we come back to the system (1.8) and look for a solution U in the

form
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Owing to 1.7 and 1.9, if U is of the form (1.27), we have, at least

formally,

Therefore, we are reduced to solve the system of Volterra integral
equations

In the following lemma, which can be easily shown using 1.7, we set
u0 = 0, v0 = 1.

1.10 LEMMA. Let 0 ~j, k~m, 0 ~  r  ~ 7B Then,

(II) for every
such that
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and

(V) if j ~ 1 and every 8 E [ o , there exist
I such that

We come back to the system (1.29); it is useful to introduce the notion
of mild solution:

1.11 DEFINITION. Let

A mild solution of (1.8) is a function U of the form
solutions of (1.29), that is, with R E

that ( 1.29)
is satisfied for almost every t in Is, T[.

Concerning the solution of (1.29), we have

1.12 THEOREM. Assume that Xo, ... , Xm are Banach spaces for

for 0  s  t  T, with l, with ak  1 for
every k,

with

Let, for every ,
The?4 the integral equation

has for a unique solution in
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Such solution u belongs to C,(X) and for every

where U1 (t) = 0(t) for every n E N,

PROOF. See [5], proposition 3.2.

1.13 COROLLARY. For every Uo in Eo,

the system (1.8) has a unique mild solution.

Moreover,

PROOF. We set Xo := Eo, for k =1, ... , From 1.10(I) we
have y~k = 2 - ~3 - vk for every j, k and, = gj (t) + Njo (t, s) Uo
(putting go : = F). Again from 1.10(1) we can take Or k = 1 - ~3 for every k .
So for every j and k ak - aj + = 2 - P - v k  1. Therefore the result
follows from 1.12.

1.14 PROPOSITION. Take Uo = 0 , F = 0 , ygj = 0 for every j =

=1, ... , m . Then, the mild solution of ( 1.8) vanishes identically.

PROOF. We have 95(t) = (0, g1 (t), ... , gm(t». Evidently a)
-0 k (T) = 0 for ( t , o) E d T, 1: E] s, T] and j , m I - It follows that

2) ~ k (~) = 0 for every (t, i) e 4 T , which implies R(t) = 0 and =

= gk for k = 1, ... , m . So we have U = 0 .
The following statement collects together the main results of [5], sec-

tion IV in the particular case that El is dense in Eo :

1.15 THEOREM. (I) Every mild solution of (1.8) is continuous in

[ s , T] with values in Eo ;
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(II) if F E T]; Eo), for j = 1, ..., m gj E T]; E¡ij) n
n C 1 - v~ + E ( [ s , T]; F) for some E &#x3E; 0 , then the mild solution of ( 1.8) is a
classical solution;

(III) if, moreover, Uo E E1 and for j = 1, ... , m y(83j(s)Uo-
- gj(s)) = 0 , the mild solution of ( 1.8) is a strict solution;
(IV) the classical solution of (1.8), if existing, is unique;

(V) the strict solution of (1.8), if existing, coincides 2uith the mild
solution.

PROOF. See [5], section IV.
Now we shall try to represent by explicit formulas the mild solution

of ( 1.8) in case gj = 0 for every j = 1, ... , m ; we come back to the system
(1.29), set N(t, s) : = and E := Eo 1 x ... xE¡ir.
We consider again the Volterra integral equation

with for some 6  1. With the

method of [8] 11.4.2, the solution 4) can be represented in the form

with

If we put we have, continuing to set
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1.16 PROPOSITION.

) and

(I I ) for every 0 E=- 10, {3 + v - 1 [ there exist 6(0)  1, C( B ) &#x3E; 0 such
that

if j ~ 1, for every there exist

 1, C( B ) &#x3E; 0 such that

PROOF. (I) We have

Fix ..., m~ and set ~(t) :_ (Nok(t, s), ..., Nmk(t, s)). Then, we
can apply 1.12 with

(II) We have

The r - th summand in 12 can be majorized with
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Finally, the r-th summand in 13 is majorized by

for every  1, majorized by

So, (II) is proved.
Concerning (III), using 1.10(III), with the same method of (I), we ob-

tain, if j ~ 1,

Concerning (IV), we have, for 0 ~ r ~ m,

Next, for every for a suitable  1,

Putting together all the estimates and using 1.10(IV)-(V), we obtain
(IV).

1.17 Let now s E [ 0 , T[, Uo E Eo and consider the mild solution U in
[ s , T] with data ( Uo , In this case we have, referring to
(1.30), h(t) = s) so that, for 0 ~ j ~ m,
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owing to (1.34). It follows that, if t E [ s , T],

So, we set, for

We examine now certain properties of the family of operators
I

1.18 LEMMA. We have, for 0 ~ S  t ~ T ,

(II) for every 0 + v - 2 there exists C(O) &#x3E; 0 such that

PROOF. (I) follows almost immediately from (1.35), 1.7(11), 1.7(X),
1.16(1), 1.16(111).
We show (II) (as usual, we set Ko ( t , s ) : = T(t - s , s ) ) ; for j =

= 0 , ... , m we have
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From 1.7(II),1.7(X), 1.16(11), 1.16(I~ we have

for every [ for certain d ( e ) and

3(g) less than 1. Again from 1.7(VIII), 1.7(XIV), 1.16(1), 1.16(111)

Finally, from 1.7(11), 1.7(X),1.16(I), 1.16(111)

So (II) is proved.

1.19 LEMMA. Let T &#x3E; 0, X a Banach space, ø: A : = I (t, a, s) E
E/!~ ~0~s~7~~r} -~X, continuous and such that, for certain 
less than 1, C &#x3E; 0,

Then, da is continuous from L1 T to X.

If a + {3  1, it is extensible with 0 to a continuous function of do-
main L1 T.

PROOF. Let ( tk , be a sequence in L1 T converging to ( t , s ) e 4 T .
If 0  6  (( t - s ) /2 ) , for 1~ sufficiently large one has S + 6 and tk ;
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It is easily seen that 3 can be chosen in such a way that, for k sufficiently
large, the sum of the first four integrals is less than a fixed E, while the
last integral converges to 0 by (for example) the dominated convergence
theorem as k - oo .

The second statement is immediate.

Next,

1.20 PROPOSITION. (I) there exists C &#x3E; 0 such 

for every ( t , s ) e L1 T;

(III) for every UOEEo, 0 £ s  T,

(V) the nap (t, s) ~ U( t , s) is continuous from L1 T to £(Eo, E1);
the map (t, s , F ) ~ U( t , s) F is continuous from A T x Eo to Eo ;
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for

(VII) let 0 E=- 10, P/2 - v[, Go a space of type 0 between Eo and El ;

PROOF. (I) follows immediately from 1.7(11) and 1.18(1).
Analogously, (II) is a consequence of 1.7(11) and 1.18(11).
(III) follows from 1.7(111) and 1.18(1).
(IV) follows from 1.15(V) and 1.15(111).
(VI) follows from 1.24(11).
It remains to prove (V) and (VII); first of all, ( t , s ) -~ T ( t - s , s) e

E c(L1 T; 2(Eo, E1 ) ) ; this follows from 1.7(1) and 1.7(VIII). Analogously,
one has from 1.7(IX) and 1.7(XIV) that, 

~ (E~~ , El ) ) . This implies that, for I

E/ij». From the estimates of [8]11.4.2 we have also that the series (1.31)
converges uniformly in L1 T ; this implies that for every ( j , k ) E c(L1 T ;

Now, m 1; then, if 0 ~ s  t ~ T ,

The function ( t , s ) --~ K~~ -1 ~ ( t - s , t ) R~o ( t , s ) belongs to C(d T ;
2(Eo, E1». The continuity of the other summands with values in

follows from 1.19. So ( t , s ) 2013~ U( t , s ) is continuous from to

2(Eo, El ). The second statement of (V) follows from the first, 1.7(111),
1.7(VIII) and 1.18(1).

Finally, from 1.18 one has that, if 9~/2-~, ~(~)-!T(~-s,
~-s-~0 uniformly in s . This proves (VII).

1.21 PROPOSITION (THE VARIATION OF PARAMETER FORMULA). (I) Let
U be the mild solution in [ s , T] (0 ~ s  T ) with data (0 , F, ( 0 ) 1, ~ , m ) ;
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then, if s  t  T

PROOF. We have

with

for 1 ~ j ~ m. It follows from (1.30)

so that
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1.22 COROLLARY. Assume that the problem (1.8) with ygj = 0 for
j =1, ... , m, has a classical solution U; theny U coincides with the mild
solution of the same problem.

PROOF. Owing to 1.15(V) and 1.21, if 0  h  T - s and s + h ~ t ~ T ,

Letting h -~ O + and using 1.20(1) and 1.20(V), we obtain that, if

1.23 DEFINITION. If (t, s) put

1.24 PROPOSITION. (I) For every ( t , s ) E L1 T V( t , s ) E1) and
there exists C &#x3E; 0 such that I I V(t, s ) ( ~ ~ cEo, Ei &#x3E; ~ C for every (t, s ) E L1 T;

(I I) the map ( t , s) ~ V(t, s) is continuous from L1 T to 2(Eo) and
from L1 T to 2(Eo, E1 );

( I I I ) the map ( t , s , F) ~ V( t , s)F is continuous from L1 T x Eo to El .

which implies (I) owing to 1.7(11) and 1.18(11).
(II) follows from 1.20(1), 1.20(V), 1.19, 1.17(1), 1.17(VIII) and

(1.38).
(III) follows from (II), 1.7(VIII), 1.7(I~, 1.18(11) and 1.19.
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2. Evolution operators for Volterra integrodifferential systems.

In this section we shall extend part of the results of the previous one
to the case of Volterra integrodifferential systems. We continue to as-
sume that the conditions (L1 ) - (L4) and (k5) are fulfilled and we keep
the meaning of the notations (1.3), (1.4), (1.5), (1.6), (1.7), (1.10), ( 1.11 ),
(1.12), (1.13), with the condition (1.9), so that (hl) - (h7) are still

satisfied.
In the following the next result will be useful:

2.1 PROPOSITION. There exists a sequence of operators in

2(Eo, E1) such that for every F E El

Moreover, there exists C &#x3E; 0 such that for every r E N

PROOF. Let E be a common linear bounded extension operator from
to for every se[0,2w] (see for this [TR] 3.3.4).

Fix and consider the operator B of domain
1-1 i

such that, for

Then, by [6] 1.6, B is the infinitesimal generator of an analytic semigroup

large, for every r E N and

for every

every

Set now, for r E N and
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where R is the restriction operator from R n to Q. The sequence 
has the requested properties.

We introduce now an 2(E1, Eo ) ) such that
(C) is such that, for some a , 1[, C&#x3E; 0,

It is not restrictive to assume a  r~ and this is what
we shall do in the following.

We introduce now the following integrodifferential system:

Here 0 ~ s  T , and A( t) was defined in

(1.16).

2.2 LEMMA. Let C satisfy the assumption (C) with a  t7; then, for
some C &#x3E; 0 , for every (t, s ) EL1 T,

PROOF. We have

Now we pass to define strict and classical solutions of (2.1):

2.3 DEFINITION. A strict solution of (2.1 ) is an element U of
such that for every t E

E [ s , T] and (2.1) is satisfied, again for every t E [ s , T].
A classical solution of (2.1 ) is an element U of C 1 (] s , T]; Eo ) n

such that U(t)ED(A(t» for every
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ð

for every t e]s, T] and the first equation in (2.1 ) is satisfied for every
t E]s, T].

In this case the integral in (2.1 ) exists (and is intended) in general-
ized sense,

Of course, if (2.1 ) has a strict solution, necessarily Uo E D(A( s ) )

2.4 LEMMA. Assume that the assumptions (L1 )-(L7 ) and (k5) are
satisfied; let UoeEo, SE[O, T[; set, for s ~ t ~ T ,

Then,

and there exists C &#x3E; 0 such that

for every 1

where, if ( t , s ) E L1 T

PROOF. The result follows easily from 1.20 and 1.24.
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2.5 LEMMA. Let s E [ 0 , T[ and R E C 12 (] s , T]; Eo ) for certain e,

,u e ]0 , 1 [ with Q  /1-; set, for s ~ t ~ T ,

then,

some C &#x3E; 0 ,

for every t F- Is, T ];
( I I ) for every t in Is, T] U(t) E D (A( t ) ) and

(I I I) for every t E ] s , T ] the integral da exists in
Bochner’s sense and s"

PROOF. We have

Now,

So, owing to 1.5(11) (applied in case Uo = 0, gj = 0 for j = 1, ..., m and F

constant), we have that U E C(] s , T]; El ). Moreover, by 1.7(11), 1.7(VIII),
1.18(11)
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Now we show that

we have from 1.20(VI), setting i

We have

for every 0 less than f3 + v - 1,
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Finally, owing to 1.7(VI),

So we have that

for every t e]s, T], uniformly in every interval [s / 3 , T] for every 6 E
e]0, T - s[. From the previous considerations we get (II).

To obtain (III), observe first that in our case, owing to (2.4), the inte-
gral (2.2) is defined even in Bochner’s sense; moreover, for t E ] s , T], ow-
ing to 2.1,

(owing to Fubini’s theorem)

2.6 REMARK. Let be such that

U( t ) E D(A( t ) ) for every T] (that is, y $j (t) U(t) = 0 for every
j = 1, ..., m , t E [ s , T]). Then, we have for very t E [ s , T]
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da~ and we can repeat without change the proof of 2.5(III),
s

observing that owing to 1.15(111), as !7(s)eD(A(s)),

Now we come back to the system (2.1) and look for a solution U in the
form

Owing to 2.4 and 2.5, if U is of the form (2.5), we have, at least
formally,

Therefore, we are reduced to solve the Volterra integral equa-
tion

2.7 LEMMA. (I) There exists C &#x3E; 0 such that for every (t, s) E d T

(II) for every 0  min I a, 1 - there exist 6(o)  1, C( 8 ) &#x3E; 0
such that, if 0 ~ s  t ~ T
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PROOF. (I) We have

using 2.2, 1.24(1) and 1.20(11).
(II) First of all,

Recalling 1.24(1), we obtain that for some C &#x3E; 0 and every E E [0, 1]

It follows that

Observe that t7 + ~  1 if and only if ~  1- t7. Next,

Finally, 

for every 0 E=- ]0, 1[. So (II) is proved.
We come back to the integral equation (2.7); we introduce the notion

of mild solution:
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2.8 DE FINITION. Let Uo E Eo , F E C( [ s , T]; Eo ). A mild solution of
(2.1 ) is a function U of the form

with T[; Eo ) solution of (2.7) (in the sense that it is satisfied
for almost every t).

We have

2.9 PROPOSITION. For every Uo E Eo , F E C([s, T]; Eo ) the problem
(2.1 ) has a unique mild solution. In this case R E C(] s , T]; Eo ) and
there exists C &#x3E; 0 such that, if s  t ~ T,

PROOF. Owing to 2.7(1), for some C &#x3E; 0, for every T ],

Then we can apply 1.12 with &#x3E;

2.10 PROPOSITION. Let U be the mild solution of (2.1 ); then,
U E C([s, T]; Eo).

PROOF. It follows easily from 1.20(11), 1.20(V), (2.8) and 1.19.

2.11 PROPOSITION. Assume that, for some E &#x3E; 0 , F E ce ([s, T]; Eo ).
Then, the mild solution of (2.1 ) is a classical solution.

PROOF. 
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for every 0  min {a, 1 - 1]} with 3(0)  1. This expression can be ma-
jorized with

This, together with the assumptions on F, 2.7(11) and (2.7), shows that R
satisfies the assumptions of 2.5. So the result follows from 2.4 and
2.5.

2.12 PROPOSITION. T[, T ]; Eo ) , f ’or
some E &#x3E; 0. Then the mild solution of (2.1) is a strict solution.

PROOF. Let then, if ;

owing to 1.15(111) and 1.15(V). Moreover, if t ~ T ,
f ~,

It follows that, if

Moreover,

and, if a

so that

The previous estimates show that
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for some positive E . Usual arguments (using (2.7)) give that R is bounded
with values in Eo and consequently holder continuous in [s, T]. So the re-
sult follows from 1.15(111) and 1.15(V).

2.13 PROPOSITION. The system (2.1 ) has at most one strict solution;
such solution, if existing, coincides with the mild solution of the same
problems.

PROOF. Obviously, the first statement is a consequence of the second.
t

So, let U be a strict solution of (2.1). Set
Then U is the strict solution of

We indicate now with M the mild solution of (2.1); then, if s ~ t ~ T ,

where

Now we set 0 (t) : :=~) -F(~); then, for T],

On the other hand, by 2.6 and (2.9),

So 0 and g are solutions of the same Volterra integral equation; it follows
from 1.12 that 0 = g, so that r = F + g and, by 1.15(V), M = U.
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2.14 Concerning the mild solution U of (2.1),we have that, if

s  t  T,

where R solves (2.7). With the considerations following 1.15, we get

where, if

with

We have also

2.15 PROPOSITION. (I) there exists C &#x3E; 0 such that, 



102

(II) let 0  t7, a~; then there exist C &#x3E; 0 and d(8)  1 such

that, if 

PROOF. It follows with usual arguments from 1.12 and 2.7.

2.16 We consider now the mild solution U with data ( Uo , 0), with
Uo E Eo ; it is easily seen that, if s  t ~ T,

where, for (t, s ) E LI T, we set

2.17 LEMMA. (I) there exists C &#x3E; 0 such that for every (t, s) E

(I I) for every ( t , s ) EL1 T ,S( t , s) E1) and for every 0 
 + v - 2 , a - 1 , - t7 1 there exists C( 8 ) &#x3E; 0 such that

PROOF. (I) follows from 1.18(1) and 2.15(1).
Concerning (II), we have

and the result follows from 1.20(11), 2.15(11), 1.18(11), 2.15(1), 
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The following result generalizes 1.20:

2.18 PROPOSITION. (I) There exists C &#x3E; 0 such that for every (t, s) E

S is differentiable with respect to t with values in £(Eo) in L1 T
and

(II) for every (t, s) EL1 T ,S(t, s) E 2 (Eo, El ) and

(III) for every

is defined in generalized sense and

(VII) if 
- v, 17, 1 - a}))[ and G,, is a space of type B between Eo and El,

PROOF. The first statement in (I) follows from 2.17(1) and 1.7(11);
(II) follows from 2.17(11) and 1.7(11); (III) follows from 2.10; (IV) follows
from 2.12; (V) follows from (2.14), (2.15), 1.20(V), 1.18; (VI) follows from
2.11; a consequence of (VI), together with (II), 2.4 and 2.17(11) is the sec-
ond statement in (I); (VII) follows from 2.17 by interpolation.
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2.19 PROPOSITION (THE VARIATION OF PARAMETER FORMULA). Let U

be the mild solution of (2.1) in [s, T] ( 0 ~ s  T) with data ( Uo, F); then,
if stT.

PROOF. Analogous to the proof of 1.21.
We conclude this section considering classical solutions:

2.20 PROPOSITION. Assume that (2.1 ) has a classical solution U;
then U coincides with the mild solution of the same problem.

PROOF. Let EE]O, T - s[; we set, for s + E ~ t ~ T ,

As From 2.13

and 2.19, we have, for s + ~ ~ t ~ T,

From 2.18(1) and (V) we have that

tends to S(t, s ) Uo in j A

and from
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we get also

and

3. Volterra integrodifferential boundary value problems of higher
order in time.

Now we apply the results of the second section to the problem

under the following assumptions:

a) the conditions (Ll)-(L4) are satisfied;

is a linear partial differential operator with coefficients defined and
continuous in d T X ,S~ such that, for every k and /3, for certain C &#x3E;

if

We take for some and u0 E

In this context we introduce the notions of strict and classical sol-
ution for (3.1):
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1 
3.1 DEFINITION. A strict solution u of (3.1) is an element of

satisfying all the conditions in (3.1), the

two first even for t = s .

A classical solution u of (3.1) is an element of

, such that

(a) there exists C &#x3E; 0 so that

s

( c ) (3.1 ) is satisfied..

3.2 REMARK. If (3.1) has a strict solution, necessarily Uo E

... , ... , 9ul_l E w2m-(l-1)d,p(Q) = Wd,P(Q).
Concerning classical solutions, the integral in the first equation of

(3.1) is understood in generalized sense, as

in and equals

We have:

3.3 THEOREM. Assume that the conditions (L1 )-(L4 ) acnd (k5)
are satisfied. Let

the

problem (3.1) has a unique classical solution. If, moreover, uo E

and, for j =

the classical solution is strict.
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PROOF. Given a classical solution u of (3.1), set

Then, clearly, U is a classical solution of

in the sense of 2.3 and viceversa if we define, for 1

and take F(t) :=(0, ... , , f(t)). The same happens for strict solutions.
Then, we can apply 2.11, 2.12, 2.13, 2.20 and get the result.

3.4 Now we drop assumption (k5 ). Assume that, for some j E
E=- 11, 
case = 0 if k &#x3E; l - r. We assume that, for 0 ~ k ~ L - r -1, the coeffi-
cients of are in C([0, T]; C2m-aj(Q» n C1 ([0, T]; C2m-aj-d(Q» n
n ... n C’’ ([ 0 , T ]; C 2’~ - ~~ -’~ (S~ ) ) . With the same argument of [6] 4.3, one
can verify that, if a strict solution of (3.1) exists, necessarily,

where we indicate with ~3~~ ~ ( t , x , ax ) the operator obtained differentiat-
ing the coefficients of Bjk (t, x , ax ) g times with respect to t . In the same
way, necessary condition for the ex-
istence of a classical solution is

(no conditions if r = 0).
To see that the conditions (3.5) and (3.6) together with the holder

continuity in time of f, guarantee the existence and uniqueness of a strict
and a classical solution respectively, we introduce by local charts a



108

strongly elliptic operator H of order d and coefficients in in aS~

and an operator K(x, 3x) of order d and coefficients in such that
for every ueWd+1,p(Q)

We need the following

3.5 LEMMA. Assume that the conditions (L1 )-(L4) are satisfied;
then, there exist operators H and K satisfying the previous conditions.
Define

Then, replacing with we obtacin ac system satisfying (L1 )-(L4)
and (k5 ).

PROOF. See [6] 4.4.
As a consequence, we deduce the following result:

3.6 THEOREM. Consider the problem (3.1) with a fixed p E=- 11, + 00 [
under the assumptions a) and fl).

such that (3.6) is satisfied (3.1 ) has a unique
K=v

classical solution, which is strict if

and (3.5) holds. 

PROOF. If a classical (strict) solution u exists, u is also a classical
(strict) solution of
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Owing to 3.3, (3.8) has a unique classical solution, which is strict if the
conditions (3.5) are satisfied; the same arguments of [6] show that u is a
classical (strict) solution of (3.1).

In the following we set

in case 

We conclude the paper giving a formula of representation of a

solution:

3.7 THEOREM. Under the assumptions of 3.6 with the notation (3.9),
the classical (strict) solution of (3.1) can be represented in the

form

with

b) there exists C &#x3E; 0 such that, under the conditions on r and i in
a), for every ( t , s ) E L1 T,

with the limit in i, f j = 1, ... , m , 0 ~ s  t x T,

PROOF. Replacing (if necessary) with ~3~ ( t , x , at , ax ),
we can assume that (1~5 ) is satisfied.
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Let now S(t, s ) (( t , s) E d T ) be the operator defined in 2.16 under
the conditions a) Then, if ( uo , ... , 

Il-1 i 1-1 1 B

Owing to 2.18(11), for every i, r E ~ 0, ... , Si, r(t, s) E
and there exists C &#x3E; 0 such that

Moreover, as, for for every s E

belongs to

and

by 2.18(1). Coming back to the problem (3.1), we obtain (3.10) from 2.19,
setting ,Sr ( t , s) _ ,So, r ( t , s). So we have proved a) - c). d) follows from
the fact that, if ... , l - 1}, uj = 0 for j # r and f = 0 , then t --3-

- Sr (t, s ) ur is a classical solution of (3.8).
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