Global bifurcation from the Fučik spectrum
Rendiconti del Seminario Matematico della Università di Padova, Tome 103 (2000), pp. 261-281.
@article{RSMUP_2000__103__261_0,
     author = {Dambrosio, Walter},
     title = {Global bifurcation from the {Fu\v{c}ik} spectrum},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {261--281},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {103},
     year = {2000},
     mrnumber = {1789543},
     zbl = {0971.34024},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_2000__103__261_0/}
}
TY  - JOUR
AU  - Dambrosio, Walter
TI  - Global bifurcation from the Fučik spectrum
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 2000
SP  - 261
EP  - 281
VL  - 103
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_2000__103__261_0/
LA  - en
ID  - RSMUP_2000__103__261_0
ER  - 
%0 Journal Article
%A Dambrosio, Walter
%T Global bifurcation from the Fučik spectrum
%J Rendiconti del Seminario Matematico della Università di Padova
%D 2000
%P 261-281
%V 103
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_2000__103__261_0/
%G en
%F RSMUP_2000__103__261_0
Dambrosio, Walter. Global bifurcation from the Fučik spectrum. Rendiconti del Seminario Matematico della Università di Padova, Tome 103 (2000), pp. 261-281. http://www.numdam.org/item/RSMUP_2000__103__261_0/

[1] J.C. Alexander - S. Antman Stuart, Global and local behaviour of bifurcating multidimensional continua of solutions for multiparameter nonlinear eigenvalue problems, Arch. Rat. Mech. Anal., 76 (1981), pp. 339-354. | MR | Zbl

[2] A. Ambrosetti A. - J. Garcia-Azorero - I. Peral, Quasilinear equations with a multiple bifurcation, Diff. Int. Eq., 10 (1997), pp. 37-50. | MR | Zbl

[3] A. Ambrosetti - G. Prodi, A primer of Nonlinear Analysis, Cambridge Studies in Adv. Math. Cambr. Univ. Press, 1993. | MR | Zbl

[4] S. Antman Stuart, Nonlinear problems of elasticity, Applied Math. Sciences, 107, Springer-Verlag, 1995. | MR | Zbl

[5] P.A. Binding - Y.X. Huang, Bifurcation from eigencurves of the p-laplacian, Diff. Int. Eq., 8, n. 2 (1995), pp. 415-428. | MR | Zbl

[6] R.S. Cantrell, Global preservation of nodal structure in coupled systems of nonlinear Sturm-Liouville boundary value problems, Proc. A.M.S., 107 (1989), pp. 633-644. | MR | Zbl

[7] A. Capietto - W. Dambrosio, Multiplicity results for some two-point super-linear asymmetric boundary value problem, Nonlinear Analysis, TMA, 38, n. 7 (1999), pp. 869-896. | MR | Zbl

[8] E.N. Dancer, On the Dirichlet problem for weakly nonlinear elliptic partial differential equations, Proc. Royal Soc. Edinburgh, 76A (1977), pp. 283-300. | MR | Zbl

[9] W. Dambrosio, Multiple solutions of weakly-coupled systems with p-Laplacian operators, Results Math., 36, n. 1-2 (1999), pp. 34-54. | MR | Zbl

[10] M. Del Pino - M. Elgueta R. MANÁSEVICH, A homotopic deformation along p of a Leray-Schauder degree result and existence for (|u' |p-2 u' )' + + f(t, u) = 0, u(0) = u(T) = 0, p > 1, J. Differential Eq., 80 (1989), pp. 1-13. | MR | Zbl

[11] P. Drábek, On the global bifurcation for a class of degenerate equations, Annali Mat. Pura Appl. (IV), 159 (1991), pp. 1-16. | MR | Zbl

[12] P. Drábek P., Solvability and bifurcation of nonlinear equations, Pitman Res. Notes in Math. Series, 264. Longman Scient. & Tech., 1992. | MR | Zbl

[13] P. Drábek P. - M. Kucera, Bifurcations of second order problems with jumping nonlinearities, Bull. Austr. Math. Society, 37 (1988), pp. 179-187. | MR | Zbl

[14] M.J. Esteban, Multiple solutions of semilinear elliptic problems in a ball, J. Differential Eq., 57 (1985), pp. 112-137. | MR | Zbl

[15] P.M. Fizpatrick - I. MASSABÒ - J. PEJSACHOWICZ, Global several-parameter bifurcation and continuation theorems: a unified approach via complementing maps, Math. Ann., 263 (1983), pp. 61-73. | MR | Zbl

[16] S. Fu, Solvability of Nonlinear equations and Boundary value problems, Math. and its Applications, 4. D. Reidel Publishing Company, 1980. | Zbl

[17] Y.X. Huang - G. Metzen, The existence of solutions to a class of semilinear differential equations, Diff. Int. Eq., 8, n. 2 (1995), pp. 429-452. | MR | Zbl

[18] J. Ize, Connected sets in multiparameter bifurcation, Nonlinear Analysis, TMA, 30, n. 6 (1997), 3763-3774 (Proc. 2nd World Congress of Nonlinear Analysis). | MR | Zbl

[19] P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), pp. 487-513. | MR | Zbl

[20] P.H. Rabinowitz, Some aspects of nonlinear eigenvalues problems, Rocky Mountain J. Math., 3 (1973), pp. 161-202. | MR | Zbl

[21] S.C. Welsh, A vector parameter global bifurcation result, Nonlinear Analysis, TMA, 25, n. 14 (1995), pp. 1425-1435. | MR | Zbl