@article{RSMUP_2000__103__261_0, author = {Dambrosio, Walter}, title = {Global bifurcation from the {Fu\v{c}ik} spectrum}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {261--281}, publisher = {Seminario Matematico of the University of Padua}, volume = {103}, year = {2000}, mrnumber = {1789543}, zbl = {0971.34024}, language = {en}, url = {http://www.numdam.org/item/RSMUP_2000__103__261_0/} }
TY - JOUR AU - Dambrosio, Walter TI - Global bifurcation from the Fučik spectrum JO - Rendiconti del Seminario Matematico della Università di Padova PY - 2000 SP - 261 EP - 281 VL - 103 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_2000__103__261_0/ LA - en ID - RSMUP_2000__103__261_0 ER -
%0 Journal Article %A Dambrosio, Walter %T Global bifurcation from the Fučik spectrum %J Rendiconti del Seminario Matematico della Università di Padova %D 2000 %P 261-281 %V 103 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_2000__103__261_0/ %G en %F RSMUP_2000__103__261_0
Dambrosio, Walter. Global bifurcation from the Fučik spectrum. Rendiconti del Seminario Matematico della Università di Padova, Tome 103 (2000), pp. 261-281. http://www.numdam.org/item/RSMUP_2000__103__261_0/
[1] Global and local behaviour of bifurcating multidimensional continua of solutions for multiparameter nonlinear eigenvalue problems, Arch. Rat. Mech. Anal., 76 (1981), pp. 339-354. | MR | Zbl
- ,[2] Quasilinear equations with a multiple bifurcation, Diff. Int. Eq., 10 (1997), pp. 37-50. | MR | Zbl
- - ,[3] A primer of Nonlinear Analysis, Cambridge Studies in Adv. Math. Cambr. Univ. Press, 1993. | MR | Zbl
- ,[4] Nonlinear problems of elasticity, Applied Math. Sciences, 107, Springer-Verlag, 1995. | MR | Zbl
,[5] Bifurcation from eigencurves of the p-laplacian, Diff. Int. Eq., 8, n. 2 (1995), pp. 415-428. | MR | Zbl
- ,[6] Global preservation of nodal structure in coupled systems of nonlinear Sturm-Liouville boundary value problems, Proc. A.M.S., 107 (1989), pp. 633-644. | MR | Zbl
,[7] Multiplicity results for some two-point super-linear asymmetric boundary value problem, Nonlinear Analysis, TMA, 38, n. 7 (1999), pp. 869-896. | MR | Zbl
- ,[8] On the Dirichlet problem for weakly nonlinear elliptic partial differential equations, Proc. Royal Soc. Edinburgh, 76A (1977), pp. 283-300. | MR | Zbl
,[9] Multiple solutions of weakly-coupled systems with p-Laplacian operators, Results Math., 36, n. 1-2 (1999), pp. 34-54. | MR | Zbl
,[10] MANÁSEVICH, A homotopic deformation along p of a Leray-Schauder degree result and existence for (|u' |p-2 u' )' + + f(t, u) = 0, u(0) = u(T) = 0, p > 1, J. Differential Eq., 80 (1989), pp. 1-13. | MR | Zbl
-[11] On the global bifurcation for a class of degenerate equations, Annali Mat. Pura Appl. (IV), 159 (1991), pp. 1-16. | MR | Zbl
,[12] Solvability and bifurcation of nonlinear equations, Pitman Res. Notes in Math. Series, 264. Longman Scient. & Tech., 1992. | MR | Zbl
P.,[13] Bifurcations of second order problems with jumping nonlinearities, Bull. Austr. Math. Society, 37 (1988), pp. 179-187. | MR | Zbl
- ,[14] Multiple solutions of semilinear elliptic problems in a ball, J. Differential Eq., 57 (1985), pp. 112-137. | MR | Zbl
,[15] I. MASSABÒ - J. PEJSACHOWICZ, Global several-parameter bifurcation and continuation theorems: a unified approach via complementing maps, Math. Ann., 263 (1983), pp. 61-73. | MR | Zbl
-[16] Solvability of Nonlinear equations and Boundary value problems, Math. and its Applications, 4. D. Reidel Publishing Company, 1980. | Zbl
,[17] The existence of solutions to a class of semilinear differential equations, Diff. Int. Eq., 8, n. 2 (1995), pp. 429-452. | MR | Zbl
- ,[18] Connected sets in multiparameter bifurcation, Nonlinear Analysis, TMA, 30, n. 6 (1997), 3763-3774 (Proc. 2nd World Congress of Nonlinear Analysis). | MR | Zbl
,[19] Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), pp. 487-513. | MR | Zbl
,[20] Some aspects of nonlinear eigenvalues problems, Rocky Mountain J. Math., 3 (1973), pp. 161-202. | MR | Zbl
,[21] A vector parameter global bifurcation result, Nonlinear Analysis, TMA, 25, n. 14 (1995), pp. 1425-1435. | MR | Zbl
,