RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA

L. FATTORUSSO

G. IDONE

Partial Hölder continuity results for solutions of non linear non variational elliptic systems with strictly controlled growth

Rendiconti del Seminario Matematico della Università di Padova, tome 103 (2000), p. 1-19

http://www.numdam.org/item?id=RSMUP_2000__103__1_0

© Rendiconti del Seminario Matematico della Università di Padova, 2000, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Partial Hölder Continuity Results for Solutions of non Linear non Variational Elliptic Systems with Strictly Controlled Growth.

L. Fattorusso - G. Idone (*)

Sunto - In un aperto limitato Ω si considera il sistema non lineare non variazionale

$$a(x, u, Du, H(u)) = b(x, u, Du)$$

dove $a(x, u, \mu, \xi)$ e $b(x, u, \mu)$ sono vettori di \mathbb{R}^N , $N \ge 1$ misurabili in x e continui nelle altre variabili. Si dimostra che se $u \in H^2(\Omega)$ è soluzione in Ω del sistema (1), se $b(x, u, \mu)$ ha andamenti strettamente controllati, se $a(x, u, \mu, \xi)$ è di classe C^1 in ξ e verifica la condizione (A) e, unitamente a $\partial a/\partial \xi$, certe condizioni di continutà, allora il vettore Du è parzialmente holderiano in Ω con ogni esponente $\alpha < 1 - n/p$.

1. Introduction.

Let Ω be a bounded open subset of \mathbb{R}^n , n > 4 of class C^2 and let $x = (x_1, x_2, \ldots, x_n)$ be a generic point in it.

The symbols $(\cdot|\cdot)_k$ and $\|\cdot\|_k$ denote the scalar product and the norm in \mathbb{R}^k , respectively. We shall omit the index k wherever there is no ambiguity.

(*) Indirizzo degli AA.: D.I.M.E.T. Facoltà di Ingegneria, via Graziella, Feo di Vito, 89128 Reggio Calabria.

Lavoro eseguito con il contributo finanziario del M.U.R.S.T. e nell'ambito del G.N.A.F.A. del C.N.R.

In what follows we denote by $\mu=(\mu_1,\,\mu_2,\,\ldots,\,\mu_n),\,\mu_i\in\mathbb{R}^N,\,N$ integer ≥ 1 , a generic vector of \mathbb{R}^{nN} and by $\xi=\{\xi_{ij}\}\ i,\,j=1,\,2,\,\ldots,\,n,\,\xi_{ij}\in\mathbb{R}^N$ a generic element of \mathbb{R}^{n^2N} .

If $u: \Omega \to \mathbb{R}^N$ is a vector, we set

$$D_i u = \frac{\partial u}{\partial x_i}; \quad Du = (D_1 u, D_2 u, ..., D_n u);$$

$$H(u) = \{D_i D_j u\} = \{D_{ij} u\}; \quad i, j = 1, 2, ..., n.$$

We consider in Ω the following second order non linear non variational system

(1.1)
$$a(x, u, Du, H(u)) = b(x, u, Du)$$

where $a(x, u, \mu, \xi)$ and $b(x, u, \mu)$ are vectors in \mathbb{R}^N , measurable in x, continuous in (u, μ, ξ) and (u, μ) respectively, satisfying the conditions:

$$a(x, u, \mu, 0) = 0.$$

(A) there exist three positive constants \overline{a} , $\overline{\gamma}$ and $\overline{\delta}$ with $\overline{\gamma} + \overline{\delta} < 1$, such that, $\forall u \in \mathbb{R}^N$, $\forall \mu \in \mathbb{R}^{nN}$, $\forall \tau$, $\eta \in \mathbb{R}^{n^2N}$ and for almost every $x \in \Omega$, we have $\binom{1}{2}$

$$\left\| \sum_{i=1}^{n} \tau_{ii} - \overline{\alpha} [a(x, u, \mu, \tau + \eta) - a(x, u, \mu, \eta)] \right\|^{2} \leq \overline{\gamma} \|\tau\|^{2} + \overline{\delta} \left\| \sum_{i=1}^{n} \tau_{ii} \right\|^{2}$$

(1.3) there exists a constant c such that, $\forall u \in \mathbb{R}^N$, $\forall \mu \in \mathbb{R}^{nN}$ and for almost every $x \in \Omega$ we have

$$||b(x, u, \mu)|| \le c(f(x) + ||u||^{\alpha} + ||\mu||^{\beta})$$

(1) From condition (A), assuming $\eta=0$, it follows, $\forall u\in\mathbb{R}^N,\ \forall\mu\in\mathbb{R}^{nN},\ \forall\tau\in\mathbb{R}^{n^2N}$ and for almost all $x\in\Omega$

$$||a(x, u, \mu, \tau)|| \le c||\tau||.$$

Moreover one can show that, if the vector $a(x, u, \mu, \xi)$ is of class C^1 with respect to ξ , with derivatives $\partial a/\partial \xi_{ij}$ bounded, then the operator $a(x, u, \mu, \xi)$ is elliptic (see [7]).

Sufficient conditions that ensure the hypothesis (A) are stated in [4] and [6].

with $f \in L^2(\Omega)$ and with

$$1 \le \alpha < \frac{n}{n-4}$$
, $1 \le \beta < \frac{n}{n-2}$.

We shall denote by $H^{s, p}(\Omega, \mathbb{R}^N)$, $H^{s, p}_0(\Omega, \mathbb{R}^N)$, s integer ≥ 0 , $p \in [1, +\infty)$, the usual Sobolev spaces (2)

By a solution to the system (1.1) we mean a vector $u \in H^2(\Omega, \mathbb{R}^N)$ satisfying (1.1) for almost all $x \in \Omega$. In this work we obtain a partial Hölder continuity result for the gradient of these solutions; this result is similar to the one proved in the case of «linear growth» by S. Campanato in [5] for the elliptic systems and by M. Marino - A. Maugeri in [8] in the parabolic case.

To achieve the partial Hölder regularity of the gradient we need to preliminary obtain the local L^q – regularity of the derivatives $D_{ij}u$. Section n° 2 is devoted to the above study, which in itself is of interest.

2. Local L^q – regularity of the matrix H(u).

Let $u \in H^2(\Omega, \mathbb{R}^N)$ be a solution in Ω to the non variational system

(2.1)
$$a(x, u, Du, H(u)) = b(x, u, Du)$$

being $a(x, u, \mu, \xi)$ and $b(x, u, \mu)$ vectors of \mathbb{R}^N satisfying assumptions (1.2), (1.3) and (A).

Proceeding with the same technique used in [5] to obtain the estimate

(2) If s, j are integers ≥ 0 and $p \in [1, +\infty)$,

$$|u|_{j, p, \Omega} = \left[\int_{\Omega} \left(\sum_{|\alpha|=j} ||D^{\alpha}u||^2\right)^{p/2} dx\right]^{1/p};$$

$$||u||_{s, p, \Omega} = \left\{ \sum_{j=0}^{s} |u|_{j, p, \Omega}^{p} \right\}^{1/p}$$

 $\begin{array}{ll} \text{where} \ \ D^{\alpha}=D_1^{\alpha_1}D_2^{\alpha_2}, \ \ldots, \ D_n^{\alpha_n}, \ \ \alpha=(\alpha_1, \ \alpha_2, \ \ldots, \ \alpha_n), \ \ \left|\alpha\right|=\alpha_1+\alpha_2+\ldots+\alpha_n, \\ \alpha_j \ \ \text{integer} \ \geqslant 0. \end{array}$

Particularly $|u|_{0, p, \Omega} = ||u||_{0, p, \Omega} = ||u||_{L^{p}(\Omega, \mathbb{R}^{N})}$.

(3.2) of lemma (3.1), we have:

(2.2)
$$\int_{B(x^0, \sigma)} \|H(u)\|^2 dx \le c\sigma^{-2} \int_{B(x^0, 2\sigma)} \|D(u) - (Du)_{2\sigma}\|^2 dx + c \int_{B(x^0, 2\sigma)} \|b(x, u, Du)\|^2 dx \, (3)(4)(5) \, .$$

To prove the L^q -local regularity result of the matrix H(u), we suppose that, in the assumption (1.3), we have

(2.3)
$$f \in L^{q_0}(\Omega)$$
 with $2 < q_0 \le 2^*$.

Moreover by the theorem of Poincaré, we have

$$(2.4) \qquad \int_{B(x^0, 2\sigma)} \|Du - (Du)_{2\sigma}\|^2 dx \le c \left(\int_{B(x^0, 2\sigma)} \|H(u)\|^{2n/(n+2)} dx \right)^{(n+2)/n}$$

where c does not depend on σ .

Now from (2.3) and from the assumption (1.3) we will also have $b(x, u, Du) \in L^{\bar{q}}_{loc}(\Omega)$ with

$$2 < \overline{q} \le q_0 \, \frac{2n}{\alpha(n-4)} \, \wedge \, \frac{2^*}{\beta} \, .$$

If we set

$$F(x) = ||H(u)||^{2n/(n+2)}, \quad G(x) = ||b(x, u, Du)||^{2n/(n+2)}.$$

The estimate (2.2) by means of the (2.4) can be written in the following manner:

$$\int_{B(x^0, \sigma)} F^{(n+2)/n} dx \leq \left(\int_{B(x^0, 2\sigma)} F dx \right)^{(n+2)/n} + c \left(\int_{B(x^0, 2\sigma)} G^{(n+2)/n} dx \right).$$

From this and by a well known lemma of Gehring - Giaquinta - G. Modica (see lemma 10.1, page 100 of [2]) written for r = (n+2)/n,

(3) $B(x^0, \sigma) = \{x \in \mathbb{R}^n : ||x - x^0|| < \sigma\}.$

(4) If $E \subset \mathbb{R}^k$ is a measurable set with positive measure and $f \in L^1(E, \mathbb{R}^k)$, we set

$$f_E = \oint_E f dx = \frac{\int_E f dx}{mis E}$$

(5)
$$u_{\sigma} = u_{B(x^0, \sigma)}, (Du)_{\sigma} = (Du)_{B(x^0, \sigma)}, (H(u))_{\sigma} = (H(u))_{B(x^0, \sigma)}.$$

 $s = (\overline{q}(n+2))/2n$, we deduce that there exists $\varepsilon \in (0, s-r]$ such that

$$F \in L^t_{loc}(\Omega) \quad \forall t \in \left[\frac{n+2}{n}, \frac{n+2}{n} + \varepsilon\right]$$

and, $\forall B(x^0, 2\sigma) \subset \Omega$, with $\sigma < 1$, one has

$$(2.5) \qquad \left(\int_{B(x^0, \sigma)} F^t dx \right)^{1/t} \leq K \left\{ \left(\int_{B(x^0, 2\sigma)} F^r dx \right)^{1/r} + \left(\int_{B(x^0, 2\sigma)} G^t dx \right)^{1/t} \right\}.$$

From (2.5) written for t = (q(n+2))/2n with $q \in [2, \overline{q})$ we achieve the following

THEOREM 2.1. If $u \in H^2(\Omega, \mathbb{R}^N)$ is a solution to the system (2.1) and if the assumptions (1.2), (1.3) with $f \in L^{q_0}(\Omega)$, $q_0 \leq 2^*$, and (A) hold, then there exists \bar{q}

$$2 < \overline{q} \le q_0 \wedge \frac{2n}{\alpha(n-4)} \wedge \frac{2^*}{\beta},$$

such that $\forall q \in [2, \overline{q}), u \in H^{2, q}_{loc}(\Omega, \mathbb{R}^N)$ and $\forall B(x^0, 2\sigma) \subset \Omega$, with $\sigma < 1$, one has:

$$(2.6) \qquad \left(\int_{B(x^0, \sigma)} ||H(u)||^q \, dx \right)^{1/q} \le$$

$$\leq K \left\{ \left(\int_{B(x^0, 2\sigma)} \|H(u)\|^2 \, dx \right)^{1/2} + \left(\int_{B(x^0, 2\sigma)} \|b\|^q \, dx \right)^{1/q} \right\}$$

where K does not depend on σ .

Now we can show the following

LEMMA 2.1. If $u \in H^2(\Omega, \mathbb{R}^N)$ is a solution to the system (2.1) and if the assumptions (1.2), (1.3) with $f \in L^p(\Omega)$, p > n, and (A) hold, then there exists \overline{q} with

$$2<\overline{q}\leqslant\frac{2n}{\alpha(n-4)}\wedge\frac{2^*}{\beta},$$

such that $\forall q \in [2, \overline{q}), \forall B(x^0, 2\sigma) \subset \Omega$, with $\sigma < 1$, it results:

$$(2.7) \qquad \left(\int_{B(x^0,\sigma)} \|H(u)\|^q dx \right)^{1/q} \le c\sigma^{n(1/q-1/2)} [\phi(u, x^0, 2\sigma)]^{1/2}$$

where c does not depend on σ and

(2.8)
$$\phi(u, x^{0}, \sigma) = \sigma^{\xi} + \int_{B(x^{0}, \sigma)} \|u\|^{2n/(n-4)} dx +$$

$$+ \int_{B(x^{0}, \sigma)} \|D(u)\|^{2n/(n+2)} dx + \int_{B(x^{0}, \sigma)} \|H(u)\|^{2} dx$$

with

$$\xi = n\left(1 - \frac{2}{p}\right).$$

PROOF. From (2.6) we have $\forall B(x^0, 2\sigma) \subset \Omega$, with $\sigma < 1$

$$(2.9) \qquad \left(\int_{B(x^0,\sigma)} \|H(u)\|^q dx \right)^{1/q} \le$$

$$\leq K\sigma^{n(1/q-1/2)}[\phi(u, x^0, 2\sigma)]^{1/2} + \left(\int_{B(x^0, 2\sigma)} \|b\|^q dx\right)^{1/q}.$$

Now we can evaluate the last term of the right hand side of (2.9).

From assumption (1.3) it follows:

$$(2.10) ||b(x, u, Du)||^q \le c\{|f(x)|^q + ||u||^{\alpha q} + ||Du||^{\beta q}\}.$$

On the other hand, one gets

$$(2. 11) \qquad \left(\int_{B(x^{0}, 2\sigma)} |f|^{q} dx \right)^{1/q} \leq c \left(\int_{B(x^{0}, 2\sigma)} |f|^{p} dx \right)^{1/p} \sigma^{n(1-q/p)(1/q)} \leq$$

$$\leq c \|f\|_{L^{p}(\Omega, \mathbb{R}^{N})} \sigma^{n(1/q-1/2)} [\phi(u, x^{0}, 2\sigma)]^{1/2};$$

$$(2.12) \qquad \left(\int_{B(x^0, \, 2\sigma)} \|u\|^{aq} \, dx \right)^{1/q} \le$$

$$\leq c \Big(\int_{B(x^0,2\sigma)} ||u||^{2n/(n-4)} dx \Big)^{\alpha(n-4)/2n} \cdot \sigma^{n(1-\alpha q(n-4)/2n)(1/q)} =$$

$$=c\sigma^{n/q}\left(\frac{\int_{B(x^0,\,2\sigma)}\|u\|^{2n/(n-4)}\,dx}{\sigma^n}\right)^{\alpha(n-4)/2n}\leqslant$$

$$\leq \sigma^{n/q} \left(1 + \frac{\int_{B(x^0, 2\sigma)} ||u||^{2n/(n-4)} dx}{\sigma^n} \right)^{1/2} \leq c \sigma^{n(1/q - 1/2)} \left(\sigma^{\xi} + \int_{B(x^0, 2\sigma)} ||u||^{2n/(n-4)} dx \right)^{1/2} \leq$$

$$\leq c\sigma^{n(1/q-1/2)}[\phi(u, x^0, 2\sigma)]^{1/2};$$

$$(2.13) \qquad \left(\int_{B(x^0, 2q)} \|Du\|^{\beta q} \, dx \right)^{1/q} \le$$

$$\leq c \Big(\int_{B(x^0, \, 2\sigma)} \|Du\|^{2n/(n-2)} \, dx \Big)^{\beta(n-2)/2n} \cdot \sigma^{n(1-\beta q(n-2)/2n)(1/q)} \leq$$

$$\leq c\sigma^{n/q} \Big(1+\int_{B(x^0,\,2\sigma)} \|Du\|^{2n/(n-2)}\,dx\Big)^{1/2} \leq c\sigma^{n(1/q-1/2)}[\phi(u,\,x^0,\,2\sigma)]^{1/2}.$$

Then, from the estimates (2.10), (2.11), (2.12), (2.13), we deduce

$$(2.14) \qquad \left(\int_{R(x^0, 2\sigma)} \|b\|^q dx \right)^{1/q} \le K\sigma^{n(1/q - 1/2)} [\phi(u, x^0, 2\sigma)]^{1/2}.$$

The estimate (2.7) easily follows from (2.9) and (2.14).

Moreover we can deduce the following

LEMMA 2.2. If $u \in H^2(B(x^0, \sigma), \mathbb{R}^N)$ with $\sigma \in (0, 1)$ is a solution to the system (2.1) and if the assumptions (1.2), (1.3) with $f \in L^p(\Omega)$, p > n

and (A) hold, then there exists \bar{q}

$$2<\overline{q}\leqslant\frac{2n}{\alpha(n-4)}\wedge\frac{2^*}{\beta}\,,$$

such that $\forall q \in [2, \overline{q}), \ \forall \tau \in (0, 1), \ one \ has$

$$(2.15) \qquad \left(\int_{B(x^{0}, \tau\sigma)} \|u\|^{2n/(n-4)} + \|Du\|^{2n/(n-2)} \right) dx \le$$

$$\le c\tau^{n} \left(\int_{B(x^{0}, \sigma)} \|u\|^{2n/(n-4)} dx + \int_{B(x^{0}, \sigma)} \|Du\|^{2n/(n-2)} dx \right) +$$

$$+ c\sigma^{2(1-2/q)} \int_{B(x^{0}, \sigma)} \|H(u)\|^{2} dx$$

where c does not depend on σ and τ .

PROOF. Let $P=(P_1,\,P_2,\,\ldots,\,P_N)$ be the polynomial vector of degree ≤ 1 such that

$$(2.16) \qquad \int_{B(x^0,\sigma)} D^{\alpha}(u-P) = 0 \quad \forall \alpha, |\alpha| \leq 1.$$

We obtain that

$$(2.17) \qquad \int_{B(x^0,\tau\sigma)} \|u\|^{2n/(n-4)} dx \leq c(\tau\sigma)^n \|P\|^{2n/(n-4)} + \int_{B(x^0,\tau\sigma)} \|u-P\|^{2n/(n-4)} dx$$

and hence taking into account (2.16) we get

$$(2.18) \quad (\tau\sigma)^n \|P\|^{2n/(n-4)} \leq \tau^n (\|u\|_{L^{2n/(n-4)}(B(x^0,\sigma))})^{2n/(n-4)} + c(u) \, \tau^n \int_{B(x^0,\sigma)} \|Du\|^{2^*} dx \, .$$

Now, by the theorem of Poincaré, we have

$$(2.19) \qquad \left(\int_{B(x^0, \tau\sigma)} \|u - P\|^{2n/(n-4)} dx \right)^{(n-4)/2n} \le c \left(\int_{B(x^0, \sigma)} \|H(u)\|^2 dx \right)^{1/2}$$

and then from the estimates (2.17), (2.18), (2.19) we obtain

$$(2.20) \qquad \int_{B(x^{0}, \tau\sigma)} \|u\|^{2n/(n-4)} dx \le c\tau^{n} \Big(\int_{B(x^{0}, \sigma)} \|u\|^{2n/(n-4)} dx \Big) +$$

$$+ c(u) \tau^{n} \int_{B(x^{0}, \sigma)} \|Du\|^{2^{*}} dx + c \Big(\int_{B(x^{0}, \sigma)} \|H(u)\|^{2} dx \Big)^{n/(n-4)};$$

Since

$$(2.21) \qquad \left(\int_{B(x^0,\sigma)} \|H(u)\|^2 dx \right)^{n/(n-4)} \leq \left(\int_{B(x^0,\sigma)} \|H(u)\|^2 dx \right) \sigma^{n(1-2/q) \cdot 4/(n-4)}.$$

$$\cdot \left[\int_{B(x^0,d,\sigma)} \|H(u)\|^q dx \right]^{8/q(n-4)} \leq c(u,q) \sigma^{2(1-2/q)} \int_{B(x^0,\sigma)} \|H(u)\|^2 dx,$$

from (2.20) and (2.21), we have

$$(2.22) \qquad \int_{B(x^0, \tau\sigma)} \|u\|^{2n/(n-4)} dx \le c\tau^n \Big(\int_{B(x^0, \sigma)} \|u\|^{2n/(n-4)} dx \Big) +$$

$$+ c(u) \tau^n \int_{B(x^0, \sigma)} \|Du\|^{2^*} dx + c(u, q) \sigma^{2(1-2/q)} \int_{B(x^0, \sigma)} \|H(u)\|^2 dx .$$

Moreover being

(2.23)
$$\int_{B(x^0, \tau\sigma)} \|Du\|^{2^*} dx \le$$

$$\le c \left(\int_{B(x^0, \tau\sigma)} \|Du - (Du)_{\sigma}\|^{2^*} dx + \int_{B(x^0, \tau\sigma)} \|(Du)_{\sigma}\|^{2^*} dx \right),$$

and taking into account that

(2.24)
$$\int_{B(x^0,\tau\sigma)} \|(Du)_{\sigma}\|^{2^*} dx \leq \tau^n \|Du\|_{L^{2^*}(B(x^0,\sigma))}^{2^*}$$

and that, in virtue of (3.19) of [2],

$$(2.25) \qquad \int_{B(x^{0}, \tau \sigma)} \|Du - (Du)_{\sigma}\|^{2^{*}} dx \leq c \left(\int_{B(x^{0}, \sigma)} \|H(u)\|^{2} dx \right)^{2^{*}/2} \leq$$

$$\leq c \left(\int_{B(x^{0}, \sigma)} \|H(u)\|^{2} dx \right) \sigma^{n(1 - 2/q)(2/(n - 2))} \left[\int_{B(x^{0}, d_{x^{0}})} \|H(u)\|^{q} dx \right]^{4/q(n - 2)} \leq$$

$$\leq c(u, q) \sigma^{2(1 - 2/q)} \int_{B(x^{0}, \sigma)} \|H(u)\|^{2} dx ,$$

we obtain

(2.26)
$$\int_{B(x^0, \tau \sigma)} \|Du\|^{2^*} dx \le c\tau^n \int_{B(x^0, \sigma)} \|Du\|^{2^*} dx + c(u, q) \sigma^{2(1-2/q)} \int_{B(x^0, \sigma)} \|H(u)\|^2 dx .$$

Therefore from (2.22) and (2.26) we deduce (2.15).

3. Partial Hölder continuity of the vector Du.

Let $u \in H^2(\Omega, \mathbb{R}^N)$ be a solution to the non variational system

(3.1)
$$a(x, u, Du, H(u)) = b(x, u, Du)$$

where $a(x, u, \mu, \xi)$ and $b(x, u, \mu)$ are vectors of \mathbb{R}^N with the following properties:

(3.2) $b(x, u, \mu)$ is measurable in x, continuous in (u, μ) and such that $\forall u \in \mathbb{R}^N$, $\forall \mu \in \mathbb{R}^{nN}$ and for x a.e. in Ω

$$||b(x, u, \mu)|| \le c\{f(x) + ||u||^{\alpha} + ||\mu||^{\beta}\},$$

with $f \in L^p(\Omega, \mathbb{R}^n)$, p > n and with $1 \le \alpha < n/(n-4)$, $1 \le \beta < < n/(n-2)$;

(3.3) $a(x, u, \mu, \xi)$ is continuous in (x, u, μ) , of class C^1 in ξ , with derivatives $\partial a/\partial \xi_{ij}(^6)$ uniformly continuous and bounded in $\Omega \times \mathbb{R}^N \times \mathbb{R}^{nN} \times \mathbb{R}^{n^2N}$ and such that

$$a(x, u, \mu, 0) = 0,$$

(A) there exist three positive constants $\overline{\alpha}$, $\overline{\gamma}$ and $\overline{\delta}$ with $\overline{\gamma} + \overline{\delta} < 1$, such that, $\forall u \in \mathbb{R}^N$, $\forall \mu \in \mathbb{R}^{nN}$, $\forall \tau$, $\eta \in \mathbb{R}^{n^2N}$ and for almost every $x \in \Omega$

$$\begin{split} \left\| \sum_{i=1}^{n} \tau_{ii} - \overline{\alpha} [a(x, u, \mu, \tau + \eta) - a(x, u, \mu, \eta)] \right\|^{2} &\leq \\ &\leq \overline{\gamma} \|\tau\|^{2} + \overline{\delta} \left\| \sum_{i=1}^{n} \tau_{ii} \right\|^{2}, \end{split}$$

(B) there exists a non negative function $\omega(t)$, defined for $t \ge 0$, continuous, bounded, concave, non decreasing with $\omega(0) = 0$ such that $\forall x, y \in \Omega$, $\forall u, v \in \mathbb{R}^N$, $\forall \mu, \overline{\mu} \in \mathbb{R}^{nN}$ and $\forall \xi, \tau \in \mathbb{R}^{n^2N}$:

$$\begin{split} & \left\| a(x,u,\mu,\xi) - a(y,v,\overline{\mu},\xi) \right\| \leqslant \omega(d^2(x,y) + \left\| u - v \right\|^2 + \left\| \mu - \overline{\mu} \right\|^2) \cdot \left\| \xi \right\|, \\ & \left\| \frac{\partial a(x,u,\mu,\xi)}{\partial \xi} - \frac{\partial a(x,u,\mu,\tau)}{\partial \xi} \right\| \leqslant \omega(\left\| \xi - \tau \right\|^2) \left(^7\right). \end{split}$$

Let us start by showing the following

LEMMA 3.1. If $u \in H^2(\Omega, \mathbb{R}^N)$ is a solution to the system (3.1) and if the assumptions (3.2) and (3.3) hold, then $\forall B(x^0, \sigma) \subset \Omega$, with $\sigma < 2$, $\forall \tau \in (0, 1)$ and $\forall \varepsilon \in (0, n-2-2(1/p+1/q)]$, where $q \in (2, \overline{q})(^8)$, it results:

$$(3.4) \qquad \phi(u, x^{0}, \tau\sigma) \leq A\phi(u, x^{0}, \sigma) \{\tau^{\lambda} + \sigma^{2(1-2/q)} + \| (\sigma\sigma^{2-n}\phi(u, x^{0}, \sigma)) \|^{1-2/q} + \| (\omega \int_{B(x^{0}, \sigma)} \|H(u) - (H(u))_{\sigma}\|^{2} d\sigma \|^{1-2/q},$$

$$\begin{array}{ll} \text{(6)} & \frac{\partial a(x,\,u,\,\mu,\,\xi)}{\partial \xi_{\,ij}} = \left\{ \frac{\partial a^{\,h}(x,\,u,\,\mu,\,\xi)}{\partial \xi_{\,ij}^{\,k}} \right\},\,h,\,k=1,\,2,\,\ldots,\,N. \\ \text{(7)} & \frac{\partial a(x,\,u,\,\mu,\,\eta)}{\partial \xi} = \left\{ \frac{\partial a(x,\,u,\,\mu,\,\eta)}{\partial \xi_{\,ij}} \right\},\,\,i,\,j=1,\,2,\,\ldots,\,n. \end{array}$$

(8) \overline{q} is the constant (>2) that appears in theorem 2.1.

where

$$\lambda = n\left(1 - \frac{2}{p}\right) - \varepsilon,$$

and

with

(3.5)
$$\phi(u, x^0, \sigma) = \sigma^{\xi} + \int_{B(x^0, \sigma)} [\|u\|^{2n/(n-4)} + \|D(u)\|^{2^*} + \|H(u)\|^2] dx$$

$$\xi = n\left(1 - \frac{2}{p}\right).$$

PROOF. Let us fix the ball $B(x^0, \sigma)$, with $\sigma < 1$, such that $B(x^0, 2\sigma) \subset C$ and let us set:

$$egin{aligned} rac{\partial ilde{a}(x,\,u,\,\mu,\,\eta)}{\partial \xi_{\,ij}} &= \left\{ \, \int_0^1 rac{\partial a^h(x,\,u,\,\mu,\,t\eta)}{\partial \xi_{\,ij}^k} \, dt
ight\} & h,\,k=1,\,2,\,...,\,N \ \\ rac{\partial ilde{a}(x,\,u,\,\mu,\,\eta)}{\partial \xi} &= \left\{ \, rac{\partial ilde{a}(x,\,u,\,\mu,\,\eta)}{\partial \xi_{\,ij}} \,
ight\} & i,\,j=1,\,2,\,...,\,n \, . \end{aligned}$$

In $B(x^0, \sigma)$ the system (3.1) can also be written in the following form:

(3.6)
$$a(x^0, u_{\sigma}, (Du)_{\sigma}, H(u)) =$$

$$= [-a(x, u, Du, H(u)) + a(x^0, u_{\sigma}, (Du)_{\sigma}, H(u))] + b(x, u, Du) =$$

$$= B_1 + b(x, u, Du).$$

On the other hand, denoting by $a^h(x^0, u_{\sigma}, (Du)_{\sigma}, \eta)$, h = 1, 2, ..., N, the h - th component of the vector $a(x^0, u_{\sigma}, (Du)_{\sigma}, \eta)$ one gets:

$$a^{h}(x^{0}, u_{\sigma}, (Du)_{\sigma}, \eta) = a^{h}(x^{0}, u_{\sigma}, (Du)_{\sigma}, \eta) - a^{h}(x^{0}, u_{\sigma}, (Du)_{\sigma}, 0) =$$

$$= \sum_{i,j=1}^{n} \sum_{k=1}^{N} \int_{0}^{1} \frac{\partial a^{h}(x^{0}, u_{\sigma}, (Du)_{\sigma}, t\eta)}{\partial \xi_{ij}^{k}} dt \eta_{ij}^{k} \qquad h = 1, 2, ..., N$$

from which

$$a(x^0, u_{\sigma}, (Du)_{\sigma}, \eta) = \sum_{i, j=1}^n \frac{\partial \tilde{a}(x^0, u_{\sigma}, (Du)_{\sigma}, \eta)}{\partial \xi_{ii}} \eta_{ij}.$$

Hence, from (3.6) the system (3.1) can be written in the following form:

$$\sum_{i, j=1}^{n} \frac{\partial \tilde{a}(x^{0}, u_{\sigma}, (Du)_{\sigma}, H(u))}{\partial \xi_{ij}} D_{ij} u = B_{1} + b(x, u, Du)$$

or, equivalently

$$(3.7) \qquad \sum_{i,j=1}^{n} \frac{\partial \tilde{a}(x^{0}, u_{\sigma}, (Du)_{\sigma}, (H(u))_{\sigma})}{\partial \xi_{ij}} D_{ij} u =$$

$$= \sum_{i,j=1}^{n} \left(-\frac{\partial \tilde{a}(x^{0}, u_{\sigma}, (Du)_{\sigma}, H(u)_{\sigma})}{\partial \xi_{ij}} + \frac{\partial \tilde{a}(x^{0}, u_{\sigma}, (Du)_{\sigma}, (H(u))_{\sigma})}{\partial \xi_{ij}} \right) D_{ij} u +$$

$$+ B_{1} + b(x, u, Du) = B_{2} + B_{1} + b(x, u, Du).$$

Letting w to be solution in $B(x^0, \sigma)$ to the elliptic Dirichlet problem

(3.8)
$$\begin{cases} w \in H_0^2(B(x^0, \sigma), \mathbb{R}^N) \\ \sum_{i, j=1}^n \frac{\partial \tilde{a}(x^0, u_{\sigma}, (Du)_{\sigma}, (H(u))_{\sigma})}{\partial \xi_{ii}} D_{ij} w = B_2 + B_1 \end{cases}$$

it results, in $B(x^0, \sigma)$, u = w + v where $v \in H^2(B(x^0, \sigma), \mathbb{R}^N)$ is solution to the linear system

$$(3.9) \qquad \sum_{i,j=1}^{n} \frac{\partial \tilde{a}(x^{0}, u_{\sigma}, (Du)_{\sigma}, (H(u))_{\sigma})}{\partial \xi_{ii}} D_{ij} v = b(x, u, Du).$$

It is known (see [1]) that for v we have the following estimate

$$\begin{split} \int_{B(x^0, \, \tau\sigma)} \|H(v)\|^2 \, dx &\leq c\tau^n \int_{B(x^0, \, \sigma)} \|H(v)\|^2 \, dx \, + \\ &\quad + c \int_{B(x^0, \, \sigma)} \|b(x, \, u, \, Du)\|^2 \, dx \, , \qquad \forall \tau \in (0, \, 1) \end{split}$$

from which and in virtue of assumption (3.2), it follows

$$(3.10) \qquad \int_{B(x^0, \tau\sigma)} \|H(v)\|^2 dx \le c\tau^n \int_{B(x^0, \sigma)} \|H(v)\|^2 dx + c \int_{B(x^0, \sigma)} |f|^2 dx + \int_{B(x^0, \sigma)} \|u\|^{2\alpha} dx + \int_{B(x^0, \sigma)} \|Du\|^{2\beta} dx$$

where c does not depend on x^0 , τ and σ .

Moreover, setting

$$F(u, x^{0}, \sigma) = \sigma^{\xi} + \int_{B(x^{0}, \sigma)} ||u||^{2n/(n-4)} dx + \int_{B(x^{0}, \sigma)} ||Du||^{2^{*}} dx,$$

being

(3.11)
$$\int_{B(x^0, \sigma)} |f|^2 dx \le c\sigma^{\xi} ||f||_{0, p, \Omega}^2 \le \overline{c} \sigma^{\xi}$$

$$(3.12) \qquad \int_{B(x^0, \sigma)} \|u\|^{2\alpha} dx \le \sigma^{n - (n - 4)\alpha} \Big(\int_{B(x^0, \sigma)} \|u\|^{2n/(n - 4)} dx \Big)^{(n - 4)(\alpha/n)} \le$$

$$\leq \sigma^{\xi} + \int_{B(x^0,\sigma)} \|u\|^{2n/(n-4)} d\sigma$$

$$(3.13) \qquad \int_{B(x^0, \sigma)} \|Du\|^{2\beta} dx \le \sigma^{n - \beta(n - 2)} \Big(\int_{B(x^0, \sigma)} \|Du\|^{2^*} dx \Big)^{2\beta/2^*} \le$$

$$\le \sigma^{\xi} + \int_{B(x^0, \sigma)} \|Du\|^{2^*} dx ,$$

the estimate (3.10) can be written in the following form

$$(3.14) \qquad \int_{B(x^0, \tau\sigma)} \|H(v)\|^2 dx \le c\tau^{\xi} \int_{B(x^0, \sigma)} \|H(v)\|^2 dx + cF(u, x^0, \sigma).$$

On the other hand from (2.15) we obtain, $\forall \tau \in (0, 1)$:

$$(3.15) F(u, x^0, \tau \sigma) \leq \tau^{\xi} F(u, x^0, \sigma) + c(u, q) \sigma^{2(1-2/q)} \phi(u, x^0, \sigma).$$

In virtue of the estimates (3.14) and (3.15), using the lemma 1, II of

Chap. I of [2], we get

$$\forall \varepsilon \in \left(0, (n-2) - 2\left(\frac{n}{p} - \frac{2}{q}\right)\right], \quad \forall \tau \in (0, 1), \forall \sigma \in (0, 1)$$

$$\int_{B(x^0, \tau\sigma)} \|H(v)\|^2 dx \le c \left\{ \int_{B(x^0, \sigma)} \|H(v)\|^2 dx + F(u, x^0, \sigma) \right\}.$$

$$\tau^{n(1-2/p)-\varepsilon} + K(\tau\sigma)^{2(1-2/q)} \phi(u, x^0, \sigma),$$

from which we obtain $\forall \lambda \in [2(1-2/q), \xi), \forall \tau \in (0, 1)$ and $\forall \sigma \in (0, 1)$

$$(3.16) \qquad \int_{B(x^0,\,\tau\sigma)} \|H(v)\|^2 dx \leq c\tau^{\lambda} \int_{B(x^0,\,\sigma)} \|H(v)\|^2 dx + c(\tau^{\lambda} + \sigma^{2(1-2/q)}\phi(u,\,x^0,\!\sigma)).$$

The function w satisfies the following estimate:

$$(3.17) \qquad \int_{B(x^0,\sigma)} \|H(w)\|^2 dx \le c \left(\int_{B(x^0,\sigma)} \|\mathcal{B}_1\|^2 dx + \int_{B(x^0,\sigma)} \|\mathcal{B}_2\|^2 dx \right).$$

Now let us estimate the integrals in the right hand side of (3.17).

From assumption (3.2), (3.3) and (2.6) we have

$$(3.18) \int_{B(x^{0},\sigma)} \|\mathcal{B}_{1}\|^{2} dx \leq$$

$$\leq \int_{B(x^{0},\sigma)} \omega^{2} (\sigma^{2} + \|u - u_{\sigma}\|^{2} + \|Du - (Du)_{\sigma}\|^{2}) \cdot \|H(u)\|^{2} dx \leq$$

$$\leq c\sigma^{n} \left(\int_{B(x^{0},\sigma)} \|H(u)\|^{q} dx \right)^{2/q} \cdot$$

$$\cdot \left(\int_{B(x^{0},\sigma)} \omega(\sigma^{2} + \|u - u_{\sigma}\|^{2} + \|Du - (Du)_{\sigma}\|^{2}) dx \right)^{1-2/q} \leq$$

 $\leq \left[\omega \left(\int_{B(x^0,\sigma)} (\sigma^2 + \|u - u_\sigma\|^2 + \|Du - (Du)_\sigma\|^2) \, dx\right)\right]^{1 - 2/q}.$

$$\cdot \left[c \left(\sigma^n \oint_{B(x^0-2\sigma)} \lVert H(u)
Vert^2 + \sigma^n \left(\oint_{B(x^0-2\sigma)} \lVert b
Vert^q \, dx
ight)^{2/q}
ight)
brace.$$

Now we observe that:

$$(3.19) \qquad \int_{R(x^0,\sigma)} \|u - u_\sigma\|^2 \, dx \le$$

$$\leq \sigma^{4} \left(\frac{\int_{B(x^{0}, \sigma)} \|Du\|^{2^{*}} dx}{\sigma^{2^{*}}} \right)^{2/2^{*}} \leq \sigma^{2} \left(1 + \int_{B(x^{0}, \sigma)} \|Du\|^{2^{*}} dx \right)$$

$$(3.20) \qquad \int_{B(x^0,\,\sigma)} \|Du - (Du)_\sigma\|^2 \, dx \leq c\sigma^2 \int_{B(x^0,\,\sigma)} \|H(u)\|^2 \, dx \; .$$

Hence

$$(3.21) \qquad \omega \left[\int_{B(x^0,\sigma)} (\sigma^2 + \|u - u_\sigma\|^2 + \|Du - (Du)_\sigma\|^2) \, dx \right] \leq \omega (c\sigma^{2-n}\phi(u, x^0, \sigma)).$$

Moreover, from (2.13), we have

(3.22)
$$\sigma^{n} \left(\int_{B(x^{0},2\sigma)} \|b\|^{q} dx \right)^{2/q} \leq c(u,f) \, \phi(u,x^{0},2\sigma).$$

Therefore, from (3.18)-(3.22) we deduce

$$(3.23) \int_{B(x^0,\sigma)} \|\mathcal{B}_1\|^2 dx \leq \left[\omega(c\sigma^{2-n}\phi(u,x^0,2\sigma))\right]^{1-2/q} \cdot c\phi(u,x^0,2\sigma).$$

Similarly we obtain

$$(3.24) \qquad \int_{B(x^0, \, \sigma)} \| \, \mathcal{B}_2 \|^2 \, dx \le$$

$$\leq c \left[\omega \left(\int_{B(x^0, 2\sigma)} \left(\|H(u) - (H(u))_{2\sigma}\|^2 dx \right) \right) \right]^{1 - 2/q} \phi(u, x^0, 2\sigma).$$

Finally, from (3.17) (3.23) and (3.24) we get

(3.25)
$$\int_{B(x^0,\sigma)} ||H(w)||^2 dx \le c\phi(u,x^0,2\sigma) .$$

$$\left. \cdot \left\{ \left[\omega(c\sigma^{2-n}\phi(u,x^{0},2\sigma)) \right]^{1-2/q} + \left[\omega\left(\int_{B(x^{0},2\sigma)} \lVert H(u) - (H(u))_{2\sigma} \rVert^{2} dx \right) \right]^{1-2/q} \right\}.$$

Since u = v + w it follows, from (3.16) and (3.25) that $\forall \tau \in (0, 1)$ and $\forall \lambda \in [2(1 - 2/q), \xi)$ we have

(3.26)
$$\int_{B(x^0, \tau \sigma)} \|H(u)\|^2 dx \le c\phi(u, x^0, 2\sigma).$$

$$\cdot \bigg\{ \tau^{\lambda} + \sigma^{2(1-2/q)} + \left[\omega(c\sigma^{2-n}\phi(u, x^{0}, 2\sigma)) \right]^{1-2/q} + \right.$$

$$+ \left[\omega \left(\int_{B(x^0, 2\sigma)} ||H(u) - (H(u))_{2\sigma}||^2 dx \right) \right]^{1-2/q} \right\}.$$

From the estimates (3.15) and (3.26) we achieve $\forall \tau \in (0, 1), \forall \sigma \in (0, 1)$ and $\forall \lambda \in [2(1 - 2/q), \xi)$

$$(3.27) \phi(u, x^0, \tau\sigma) \leq c\phi(u, x^0, 2\sigma).$$

$$\cdot \left\{ au^{\lambda} + \sigma^{2(1-2/q)} + \left[\omega(c\sigma^{2-n}\phi(u, x^0, 2\sigma)
ight]^{1-2/q} +
ight.$$

$$+ \left[\omega \left(\int_{B(x^0, 2\sigma)} ||H(u) - (H(u))_{2\sigma}||^2 dx \right) \right]^{1-2/q} \right\}.$$

This estimate is easily true for $\tau \in [1, 2)$ and thus the lemma is proved.

Let us set:

$$\mathcal{B}_1 = \left\{x \in \Omega: \lim_{\sigma \to 0} \int_{B(x,\,\sigma)} \lVert H(u) - (H(u))_\sigma \rVert^2 \, dy > 0\right\}$$

$$\mathcal{B}_2 = \left\{ x \in \Omega : \lim_{\sigma \to 0} ' \sigma^{2-n} \phi(u, x, \sigma) > 0 \right\}.$$

By a well known property of the Lebesgue integral we have

$$mis \mathcal{B}_1 = 0$$

and taking into account a well known theorem of Giusti [2], we obtain

$$\mathcal{H}_{n-2}(\mathcal{B}_2)=0$$

where \mathcal{H}_{ν} is the γ -dimensional Hausdorff measure.

Hence the set $\mathcal{B}_1 \cup \mathcal{B}_2$ has measure zero.

Now, reasoning exactly as in theorem 5.1 of [3], it is easy to prove

LEMMA 3.2. If $u \in H^2(\Omega, \mathbb{R}^N)$ is a solution to the system (3.1) if the assumptions (3.2) and (3.3) hold, then, for every fixed $\varepsilon \in (0, 1 - n/p)$, it is possible to associate to every $x^0 \in \Omega \setminus \mathcal{B}_1 \cup \mathcal{B}_2$ a ball $B(x^0, R_{x^0}) \subset \Omega \setminus \mathcal{B}_2$ and a positive number σ_{ε} such that, $\forall t \in (0, 1)$ and $\forall y \in \mathcal{B}(x^0, R_{x^0})$

$$\phi(u, y, t\sigma_{\varepsilon}) \leq (1+A)t^{n(1-2/p)-2\varepsilon}\phi(u, y, \sigma_{\varepsilon})$$

and hence (see [2])

$$H(u) \in L^{2, n(1-2/p)-2\varepsilon}(B(x^0, R_{x^0}), \mathbb{R}^{n^2N}))$$

$$D(u) \in \mathcal{L}^{2, n(1-2/p)-2\varepsilon+2}(B(x^0, R_{x^0}), \mathbb{R}^{nN}).$$

From lemma (3.2) the following result of partial Hölder continuity for Du easily follows.

THEOREM 3.1. If $u \in H^2(\Omega, \mathbb{R}^N)$ is a solution to the system (3.1) and if the hypotheses (3.2) (3.3) are fulfilled, then there exists a set \mathcal{B}_0 , closed in $\mathcal{B}(^9)$ with

$$\mathcal{B}_2 \subset \mathcal{B}_0 \subset \mathcal{B}_1 \cup \mathcal{B}_2$$

such that

$$Du \in C^{0, \alpha}(\Omega \setminus \mathcal{B}_0, \mathbb{R}^{nN}), \quad \forall \alpha < 1 - \frac{n}{p}.$$

(9) In particular $m(\mathcal{B}_0) = 0$.

BIBLIOGRAPHY

- [1] S. CAMPANATO, Equazioni ellittiche del II ordine e spazi $\mathcal{L}^{2,\lambda}$, Ann. Mat. pura e appl., 69 (1965), pp. 321-382.
- [2] S. CAMPANATO, Sistemi ellittici in forma di divergenza. Regolarità all'interno, Quaderni Scuola Normale Sup. Pisa, 1980.
- [3] S. CAMPANATO, Hölder continuity and partial Hölder continuity results for H^{1, q}-solution of non linear elliptic systems with controlled growth, Rendiconti Sem. Mat. e Fis. Milano., Vol. LII (1982).
- [4] S. CAMPANATO, A Cordes type condition for non linear non variational systems, Rend. Acc. Naz. Lincei, XL 13 (1989), pp. 307-321.
- [5] S. CAMPANATO, $\mathcal{L}^{2,\lambda}$ theory for non linear non variational differential systems, Rend. Matem. Serie VII, Vol. 10, Roma (1990), pp. 531-549.
- [6] S. CAMPANATO: Non variational differential systems: A condition for local existence and uniqueness, Proceedings of the Caccioppoli Conference, Ricerche di Mat. Suppl., Vol XL (1991), pp. 129-140.
- [7] S. CAMPANATO, Non variational basic elliptic systems of second order, Rend. Sem. Mat. Fisica. Milano, 60 (1990), pp. 113-131.
- [8] M. Marino M. Maugeri, Second order non linear non variational parabolic systems, Rend. Matem. Serie VII, Vol. 13, Roma (1993).

Manoscritto pervenuto in redazione il 29 luglio 1997.