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Periodic Solutions

for a Sellers Type Diffusive Energy
Balance Model in Climatology.

MAURIZIO BADII (*)

1. Introduction.

In this paper we consider the mathematical treatment of a time evo-
lution model of the temperature on the Earth surface, obtained by an en-
ergy balance model. Climate models were independently introduced in
1969 by Budyko [1] and Sellers [7]. These models have a global character
i.e. refer to all Earth and involves a relatively long-time scales with re-
spect to the predition time.

We want to study the existence of periodic solutions for the nonlinear
parabolic problem

where

Ra(x, t, u) :_ (~(x, t) /3(u) , &#x3E; where Q(~)~0, &#x3E; &#x3E;

(2) ~ ~(x, ~) is I-periodic Vx E [ -1, 1] and

P is a nonnegative,bounded nondecreasing function for any u E R

(*) Indirizzo dell’A.: Dipartimento di Matematica «G. Castelnuovo», Univer-
sita di Roma «La Sapienza», P.le A. Moro 2, 00185 Roma, Italy.

Partially supported by G.N.A.F.A. and M.U.R.S.T. 40% Equazioni Differen-
ziali.
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Re (x , ~ ) is a strictly increasing odd

and B , A positive constants

In (2), Q(x, t) describes the incoming solar radiation flux and the as-
sumption Q(x, t) &#x3E; 0, allows to consider also the polar night phenomena.
Function Ra represents the fraction of the solar energy absorbed by the
Earth, clearly it depends on the albedo or reflexivity of the Earth
surface.

The albedo function a(u) is usually taken such that 0  a(u)  1,
thus the coalbedo function := 1 - a(u), represents the fraction of
the absorbed light.

In (3), function R, represents the emitted energy by the Earth to the
outer space. In the balance of energy models, one considers a rapid vari-
ation of the coalbedo function near to the critic temperature u = -10 ° C.
In this paper, we want to study the existence of periodic solutions for the
Sellers model. For his model, Sellers proposed as coalbedo a function al-
lowing a partially ice-free zone, ui  u  uw. An example of such function is

where ai is the «ice » coalbedo ( --- 0.38), aw is the «ice-free» coalbedo
( --- 0.71), ui and uw are fixed temperatures very close to -10 ° C and Re is
taken of the form Re (x, u) = B I U 13 u. Our interest in the periodic forc-
ing term is motivated by the seasonal variation of the incoming solar ra-
diation flux during one year. As usual, u(x, t) represents the mean annu-
al temperature averaging on the latitude circles around the Earth (de-
noted by x = sin 0, where 0 is the latitude).

The diffusion coefficient (2 in (P), degenerates at x = ± 1 and for p &#x3E; 2

the equation in (P) degenerates also on the set of points where
ux = 0.

To prove the existence of periodic solutions for (P), we consider an in-
itial-boundary problem associated to (P)
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with T ;1 arbitrary and

The problem (P1 ) is a model used in climatology to describe the climate
energy balance models. Since (P1 ) degenerates at x = ± 1 and where
ux = 0, we cannot expect that (P1 ) has classical solutions (see [3] for g = 1
and Ra = 0), thus we shall deal with a weak solution for (P1 ).

It was proved in [2] that if uo E L °° ( -1, 1) there exists at least one
bounded weak solution for (P1 ).

The assumption

There exists a constant L &#x3E; 0 such that

is nonincreasing

shall be utilized to prove the uniqueness of the bounded weak solution
for (P1 ). Because of the degenerate diffusion coefficient ~o(x), the natural
energy space associated to (P1 ), is the one defined by

where

V is a separable and reflexive Banach space with the norm

To prove the existence of periodic solutions of the problem (P), we con-
struct a subsolution and a supersolution of (P1 ).

Then, we consider the Poincaré map F associated to (P1 ) i.e. the oper-
ator assigning to every initial data of the ordered interval [ v( x ), 
the solution of (P1 ) after 1-period. One proves that F is continuous, com-
pact and pointwise increasing. By the Schauder fixed point theorem,
there exists at least a fixed point for F.

This fixed point is a periodic solution for the problem (P).
Finally, one shows that (P) has a smallest and a greatest periodic

solution.

The existence of periodic solutions for (P) both on a Riemannian
manifold without boundary and for the Budyko type mode, ({3 is
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a bounded maximal monotone graph of and 
B &#x3E; 0 , A &#x3E; 0), shall be the argument of a forthcoming paper.

In the nondegenerate case i.e. p = 2, the study of the periodic case
for the climate energy balance models has been carried out by
[4-5].

2. Existence and uniqueness of the solution.

DEFINITION 1. For a bound,ed weak solution to (Pl ) we mean a , func-
tion u E C([0 , T]; (QT : = (-1,1) X

such that

DEFINITION 2. For an 1-peTiodic bounded weak solution to (P), we
mean a function such that u E

E ~, u(x, t + 1) = u(x, t), ut E L~~ (IE~.+ ; V’ ) and satisfies VI : =
: = [ to , tl ] the following equality
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In [2] has been proved, by means of a regularization argument, the
existence of solutions to (P1 ). This method consists to replace by

In order to approximate u by classical solutions of a related problem to
(P1 ), we replace the data uo , ~3 , Q and Re by C °° functions ~8 ~ , Q.,

Re, k satisfies (3), Re,k(" ~)2013~jRg(’, u) in ~’( [ -1, 1 ] ) for any fixed
u E R.

Then, given c, positive constants, we consider the approxi-
mating problem for T ~ 1

The problem (P~ ) is now uniformly parabolic and by well-known results
(see [6]) has a unique classic solution ul, m, n, k.

Moreover, it has been proved in [2] that

where C is a positive constant, independent of c, m , n , k.
Using the a priori estimates, we can pass to the limit as E goes to zero

and m , n , and we get

THEOREM 1 ([2]). With assumptions (1)-(3) for any uo E L °° ( -
-1, 1 ), there exists at least a bounded weak solution to (P1 ).

The uniqueness of the bounded weak solution for (P1 ), is obtained

using the assumption (5). In fact

THEOREM 2. If (1)-(3) and (5) hold, for any uo E L 00 ( -1, 1 ) there
exists a unique bounded weak solution for the problem (P1 ).
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PROOF. If by contradiction there exist two solutions ul and U2 for
(P1 ), multiplying by (ul - u2 ) + e L P (0, T ; V)

and integrating on ( -1, 1 ), since (~i 2013p~eL~ (0~ T ; V’ ) (see [2]), one
has

Since the operator = is nondecreasing, by (5) and
integrating on (0, t) we have

U -1

By the Gronwall lemma, it follows the uniqueness of the solution.

3. Subsolutions-supersolutions.

We assume that

We consider the stationary problems
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A subsolution for (PS)l is given by the function

with a  0 , b &#x3E; 0 , 10  a + b , suitable constants to be chosen later with
1/p + 1/p* = 1.

In fact

Hence,

We want that

Since, v( x ) ~ -10 - b - a , we have by (3) that

Moreover, therefore we choose

a, b such that

A supersolution for (PS)2 is given by the function

with a, b suitable constants, with a  0 , b &#x3E; 0, 10  a + b as before,

In fact
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We require that

Since,

we have

because of (3), where Q2 : = [ -1, 1 ]} and M is such that
~8(u) ~ M, for any UER.

Moreover, therefore we
want that a, b verify

Now, it is possible to prove the following result

THEOREM 3. If (1)-(5) and (11), hold the soLution u of (Pl ) with Uo E
E [V(X), verifies

PROOF. Multiplying by (u - u) + and integrating on ( -1, 1 ), we
obtain

where j J
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Since , is a nondecreasing operator, we get

Now, (5) gives us

Integrating on (0, t) and by the Gronwall lemma, one has

In a similar way one proves that

If we denote with F the Poinear6 map defined by

(u is the solution of (Pl )), to. apply the Schauder fixed point theorem in
the space L °° ( -1, 1 ), we need of a closed and convex set K c L °° ( -1, 1 )
and to show that

i) F(K) c K;

ii) is continuous;

iii) F(K) is relatively compact in L °° ( -1, 1 ).

Define

it is easy to prove that K is a closed, convex and nonempty set.
Now, i) it follows from the Theorem 3 because we have showed that

u(x)] c [v(x), u(x)].



190

LEMMA 4. With the assumptions of the Theorem 3, let uo., uo E K be
such that Uon - Uo in L 00 ( - 1, 1 ) as n --~ 00. Then, if un (respectively) u
are the solutions of (P1 ) with initial data and uo respectively, we
have that t) in L ’ ( -1, 1 ) as n -~ ~ , dt E [ 0, T].

PROOF. Subtracting member to member and multiplying by
sgn + (un - u) E V, after an integration on Qt we have

by which

The Gronwall lemma gives us

Changing u(t) with un(t), one has

Since uon converges in L °° ( -1, 1 ) to uo we have that con-

verges in L 1 ( -1, 1) and a.e. to u(t) as n goes to infinity.
As un (x , by the Lebesgue theorem, one has that Un (., t ) strongly

converges to u( ~ , t ) in L p ( -1, 1 ), +00. This proves ii).
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The proof that F(u) is relatively compact follows by a result of [2],
where it is showed that V c L °° ( -1, 1), with compact embedding, for
p &#x3E; 2.

Now, F(K) is bounded in V and by the quoted result, it follows that
F(K) is relatively compact in L °° ( -1, 1). Then, by the Schauder fixed
point theorem, there exists a fixed point for the Poinear6 map F. This
fixed point is a periodic solution for (P).

If together to (Pi), we consider the problems

as it was proved in the Theorem 3, for the solution of ( P ) we 
~ F(v), while for the solution of (P) one has u.

If we define by recurrence the sequences

and

the Picar iterates {zn} and lw.1 makes two sequences, the first
one is nondecreasing, the second one nonincreasing regard to the

pointwise ordering,

with

There exist the following pointwise limits
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By the Lebesgue theorem, the convergence in (19) and (20) is uni-

form.
Since F is a continuous map, z(x, 1) = lim z. (x, 1 ) = =

Thus, z(x, 1) and w(x, 1) are the smallest respctively greatest peri-
odic solutions of (P) in the ordered interval [v(x), u(x)] of L 00 ( -

-1, 1 ).
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