RENDICONTI

del
 SEMINARIO MATEMATICO della Università di Padova

MAURIZIO BADII

Periodic solutions for Sellers type diffusive energy balance model in climatology

Rendiconti del Seminario Matematico della Università di Padova, tome 103 (2000), p. 181-192
http://www.numdam.org/item?id=RSMUP_2000__103__181_0

© Rendiconti del Seminario Matematico della Università di Padova, 2000, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

Periodic Solutions for a Sellers Type Diffusive Energy Balance Model in Climatology.

Maurizio Badii (*)

1. Introduction.

In this paper we consider the mathematical treatment of a time evolution model of the temperature on the Earth surface, obtained by an energy balance model. Climate models were independently introduced in 1969 by Budyko [1] and Sellers [7]. These models have a global character i.e. refer to all Earth and involves a relatively long-time scales with respect to the predition time.

We want to study the existence of periodic solutions for the nonlinear parabolic problem

$$
\text { (P) }\left\{\begin{array}{l}
u_{t}-\left(\varrho(x)\left|u_{x}\right|^{p-2} u_{x}\right)_{x}=R_{a}(x, t, u)-R_{e}(x, u), \quad \text { in } Q:=(-1,1) \times \mathbb{R}_{+} \\
\left(\varrho(x)\left|u_{x}\right|^{p-2} u_{x}\right)(\pm 1, t)=0, \quad \forall t>0, p \geqslant 2
\end{array}\right.
$$

where

$$
\begin{equation*}
\varrho(x):=k\left(1-x^{2}\right), \quad \forall x \in[-1,1], \quad k>0 ; \tag{1}
\end{equation*}
$$

(2) $\left\{\begin{array}{l}R_{a}(x, t, u):=Q(x, t) \beta(u), \quad \text { where } Q(x, t) \geqslant 0, Q \in C\left([-1,1] \times \mathbb{R}_{+}\right), \\ Q(x, \cdot) \text { is 1-periodic } \forall x \in[-1,1] \text { and } \\ \beta \text { is a nonnegative,bounded nondecreasing function for any } u \in \mathbb{R}\end{array}\right.$
(*) Indirizzo dell'A.: Dipartimento di Matematica «G. Castelnuovo», Università di Roma «La Sapienza», P.le A. Moro 2, 00185 Roma, Italy.

Partially supported by G.N.A.F.A. and M.U.R.S.T. 40% Equazioni Differenziali.

$$
\left\{\begin{array}{l}
R_{e} \in C([-1,1] \times \mathbb{R}), \quad R_{e}(x, \cdot) \text { is a strictly increasing odd } \tag{3}\\
\text { function for } x \in[-1,1], \quad R_{e}(x, 0)=0, \quad R_{e}(x, s) \geqslant B s-A \\
\text { for any } x \in[-1,1], \quad \forall u \geqslant 0 \text { and } B, A \text { positive constants }
\end{array}\right.
$$

In (2), $Q(x, t)$ describes the incoming solar radiation flux and the assumption $Q(x, t) \geqslant 0$, allows to consider also the polar night phenomena. Function R_{a} represents the fraction of the solar energy absorbed by the Earth, clearly it depends on the albedo or reflexivity of the Earth surface.

The albedo function $\alpha(u)$ is usually taken such that $0<\alpha(u)<1$, thus the coalbedo function $\beta(u):=1-\alpha(u)$, represents the fraction of the absorbed light.

In (3), function R_{e} represents the emitted energy by the Earth to the outer space. In the balance of energy models, one considers a rapid variation of the coalbedo function near to the critic temperature $u=-10^{\circ} \mathrm{C}$. In this paper, we want to study the existence of periodic solutions for the Sellers model. For his model, Sellers proposed as coalbedo a function allowing a partially ice-free zone, $u_{i}<u<u_{w}$. An example of such function is

$$
\beta(u)= \begin{cases}a_{w}, & \text { if } u_{w}<u \\ a_{i}+\left(\left(u-u_{i}\right) /\left(u_{w}-u_{i}\right)\right)\left(a_{w}-a_{i}\right), & \text { if } u_{i} \leqslant u \leqslant u_{w} \\ a_{i}, & \text { if } u<u_{i}\end{cases}
$$

where a_{i} is the «ice» coalbedo (~ 0.38), a_{w} is the «ice-free» coalbedo $(\sim 0.71), u_{i}$ and u_{w} are fixed temperatures very close to $-10^{\circ} \mathrm{C}$ and R_{e} is taken of the form $R_{e}(x, u)=B|u|^{3} u$. Our interest in the periodic forcing term is motivated by the seasonal variation of the incoming solar radiation flux during one year. As usual, $u(x, t)$ represents the mean annual temperature averaging on the latitude circles around the Earth (denoted by $x=\sin \phi$, where ϕ is the latitude).

The diffusion coefficient ϱ in (P), degenerates at $x= \pm 1$ and for $p>2$ the equation in (P) degenerates also on the set of points where $u_{x}=0$.

To prove the existence of periodic solutions for (P), we consider an in-itial-boundary problem associated to (P)
$\left(\mathrm{P}_{1}\right) \begin{cases}u_{t}-\left(\varrho(x)\left|u_{x}\right|^{p-2} u_{x}\right)_{x}=R_{a}(x, t, u)-R_{e}(x, u), & \text { in }[-1,1] \times(0, T) \\ \left(\varrho(x)\left|u_{x}\right|^{p-2} u_{x}\right)(\pm 1, t)=0, & t \in(0, T) \\ u(x, 0)=u_{0}(x), & x \in(-1,1)\end{cases}$
with $T \geqslant 1$ arbitrary and

$$
\begin{equation*}
u_{0} \in L^{\infty}(-1,1) \tag{4}
\end{equation*}
$$

The problem $\left(\mathrm{P}_{1}\right)$ is a model used in climatology to describe the climate energy balance models. Since (P_{1}) degenerates at $x= \pm 1$ and where $u_{x}=0$, we cannot expect that (P_{1}) has classical solutions (see [3] for $\varrho=1$ and $R_{a}=0$), thus we shall deal with a weak solution for (P_{1}).

It was proved in [2] that if $u_{0} \in L^{\infty}(-1,1)$ there exists at least one bounded weak solution for $\left(\mathrm{P}_{1}\right)$.

The assumption

$$
\left\{\begin{array}{l}
\text { There exists a constant } L>0 \text { such that } \tag{5}\\
s \rightarrow R_{a}(x, t, s)-R_{e}(x, s)-L s \text { is nonincreasing }
\end{array}\right.
$$

shall be utilized to prove the uniqueness of the bounded weak solution for $\left(\mathrm{P}_{1}\right)$. Because of the degenerate diffusion coefficient $\varrho(x)$, the natural energy space associated to (P_{1}), is the one defined by

$$
V:=\left\{w \in L^{2}(-1,1): w_{x} \in L^{p}(-1,1 ; \varrho)\right\}
$$

where

$$
L^{p}(-1,1 ; \varrho):=\left\{v:\|v\|_{L^{p}(-1,1 ; \varrho)}:=\left(\int_{-1}^{1} \varrho(x)|v(x)|^{p} d x\right)^{1 / p}<+\infty\right\}
$$

V is a separable and reflexive Banach space with the norm

$$
\|v\|_{v}:=\|v\|_{L^{2}(-1,1)}+\left\|v_{x}\right\|_{L^{p}(-1,1 ; \varrho)} .
$$

To prove the existence of periodic solutions of the problem (P), we construct a subsolution $\underline{v}(x)$ and a supersolution $\bar{u}(x)$ of $\left(\mathrm{P}_{1}\right)$.

Then, we consider the Poincaré map F associated to $\left(\mathrm{P}_{1}\right)$ i.e. the operator assigning to every initial data of the ordered interval $[\underline{v}(x), \bar{u}(x)]$ the solution of $\left(\mathrm{P}_{1}\right)$ after 1-period. One proves that F is continuous, compact and pointwise increasing. By the Schauder fixed point theorem, there exists at least a fixed point for F.

This fixed point is a periodic solution for the problem (P).
Finally, one shows that (P) has a smallest and a greatest periodic solution.

The existence of periodic solutions for (P) both on a Riemannian manifold without boundary and for the Budyko type mode, (β is
a bounded maximal monotone graph of \mathbb{R}^{2} and $R_{e}(x, u)=B u+A$, $B>0, A>0$), shall be the argument of a forthcoming paper.

In the nondegenerate case i.e. $p=2$, the study of the periodic case for the climate energy balance models has been carried out by [4-5].

2. Existence and uniqueness of the solution.

DEFINITION 1. For a bounded weak solution to $\left(\mathrm{P}_{1}\right)$ we mean a function $u \in C\left([0, T] ; L^{2}(-1,1)\right) \cap L^{\infty}\left(Q_{T}\right) \cap L^{p}(0, T ; V), \quad\left(Q_{T}:=(-1,1) \times\right.$ $\times(0, T))$ such that

$$
\begin{aligned}
\int_{-1}^{1} u(x, T) v(x, T) & d x-\int_{0}^{T} \int_{-1}^{1} u(x, t) v_{t}(x, t) d x d t+ \\
& +\int_{0}^{T} \int_{-1}^{1} \varrho(x)\left|u_{x}(x, t)\right|^{p-2} u_{x}(x, t) v_{x}(x, t) d x d t= \\
& =\int_{0}^{T} \int_{-1}^{1}\left(Q(x, t) \beta(u(x, t))-R_{e}(x, u(x, t)) v(x, t) d x d t+\right. \\
& +\int_{-1}^{1} u_{0}(x) v(x, 0) d x
\end{aligned}
$$

$$
\forall v \in L^{p}(0, T ; V) \cap L^{\infty}\left(Q_{T}\right) \text { such that } v_{t} \in L^{p^{\prime}}\left(0, T ; V^{\prime}\right)
$$

DEFINITION 2. For an 1-periodic bounded weak solution to (P), we mean a function $u \in C\left(\mathbb{R}_{+} ; L^{2}(-1,1)\right) \cap L^{\infty}(Q)$ such that $u \in$ $\in L_{\mathrm{loc}}^{p}\left(\mathbb{R}_{+} ; V\right), u(x, t+1)=u(x, t), u_{t} \in L_{\mathrm{loc}}^{p^{\prime}}\left(\mathbb{R}_{+} ; V^{\prime}\right)$ and satisfies $\forall I:=$ $:=\left[t_{0}, t_{1}\right]$ the following equality

$$
\begin{aligned}
& \int_{I}\left\langle u_{t}, z\right\rangle d t+\int_{I-1}^{1}\left(\varrho(x)\left|u_{x}\right|^{p-2} u_{x}\right) z_{x} d x d t- \\
&-\int_{I-1}^{1} \int_{-1}^{1}\left(R_{a}(x, t, u)-R_{e}(x, u)\right) z(x, t) d x d t=0 \\
& \forall z \in L^{p}(I ; V) \cap L^{\infty}((-1,1) \times I)
\end{aligned}
$$

In [2] has been proved, by means of a regularization argument, the existence of solutions to (P_{1}). This method consists to replace $\varrho(x)$ by

$$
\begin{equation*}
\varrho_{\varepsilon}(x)=\varrho(x)+\varepsilon . \tag{6}
\end{equation*}
$$

In order to approximate u by classical solutions of a related problem to (P_{1}), we replace the data u_{0}, β, Q and R_{e} by C^{∞} functions $u_{0, m}, \beta_{\varepsilon}, Q_{n}$, $R_{e, k}$ such that $u_{0}(\pm 1)=0,\left\|u_{0, m}\right\|_{L^{\infty}(-1,1)} \leqslant\left\|u_{0}\right\|_{L^{\infty}(-1,1)}$ and $u_{0, m} \rightarrow u_{0}$ in $L^{2}(-1,1)$ as $m \rightarrow \infty, Q_{n} \rightarrow Q$ in $C\left(\bar{Q}_{T}\right), Q_{n}$ 1-periodic in t.
$R_{e, k}$ satisfies (3), $R_{e, k}(\cdot, u) \rightarrow R_{e}(\cdot, u)$ in $C([-1,1])$ for any fixed $u \in \mathbb{R}$.

Then, given ε, m, n and k positive constants, we consider the approximating problem for $T \geqslant 1$
$\left(\mathbf{P}_{\varepsilon}\right) \begin{cases}u_{t}-\left(\varrho_{\varepsilon}(x)\left|u_{x}\right|^{p-2} u_{x}\right)_{x}-\varepsilon u_{x x}=Q_{n}(x, t) \beta_{\varepsilon}(u)-R_{e, k}(x, u), & \text { in } Q_{T} \\ \varrho_{\varepsilon}(x)\left(\left|u_{x}\right|^{p-2} u_{x}+\varepsilon u_{x}\right)(\pm 1, t)=0, & \text { in }(0, T) \\ u(x, 0)=u_{0, m}(x), & \text { in }(-1,1) .\end{cases}$
The problem (P_{ε}) is now uniformly parabolic and by well-known results (see [6]) has a unique classic solution $u_{\varepsilon, m, n, k}$.

Moreover, it has been proved in [2] that

$$
\begin{equation*}
\left\|u_{\varepsilon, m, n, k}\right\|_{L^{\infty}\left(Q_{T}\right)} \leqslant C \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\left\|\varrho_{\varepsilon}\left(u_{\varepsilon, m, n, k}\right)\right\|_{L^{P}\left(0, T ; L^{P}(-1,1)\right)} \leqslant C \tag{8}
\end{equation*}
$$

where C is a positive constant, independent of ε, m, n, k.
Using the a priori estimates, we can pass to the limit as ε goes to zero and $m, n, k \rightarrow \infty$ and we get

Theorem 1 ([2]). With assumptions (1)-(3) for any $u_{0} \in L^{\infty}(-$ $-1,1)$, there exists at least a bounded weak solution to (P_{1}).

The uniqueness of the bounded weak solution for $\left(\mathrm{P}_{1}\right)$, is obtained using the assumption (5). In fact

Theorem 2. If (1)-(3) and (5) hold, for any $u_{0} \in L^{\infty}(-1,1)$ there exists a unique bounded weak solution for the problem $\left(\mathrm{P}_{1}\right)$.

Proof. If by contradiction there exist two solutions u_{1} and u_{2} for $\left(\mathrm{P}_{1}\right)$, multiplying by $\left(u_{1}-u_{2}\right)^{+} \in L^{p}(0, T ; V)$

$$
\begin{aligned}
& u_{1 t}-u_{2 t}-\left(\varrho(x)\left|u_{1 x}\right|^{p-2} u_{1 x}\right)_{x}+\left(\varrho(x)\left|u_{2 x}\right|^{p-2} u_{2 x}\right)_{x}= \\
& \quad=R_{a}\left(x, t, u_{1}\right)-R_{e}\left(x, u_{1}\right)-R_{a}\left(x, t, u_{2}\right)+R_{e}\left(x, u_{2}\right)
\end{aligned}
$$

and integrating on $(-1,1)$, since $\left(u_{1}-u_{2}\right)_{t} \in L^{p^{\prime}}\left(0, T ; V^{\prime}\right)$ (see [2]), one has
(9) $(1 / 2) d / d t \int_{-1}^{1}\left(u_{1}-u_{2}\right)^{+2} d x=$

$$
\begin{aligned}
& =-\int_{-1}^{1}\left(\varrho(x)\left|u_{1 x}\right|^{p-2} u_{1 x}-\varrho(x)\left|u_{2 x}\right|^{p-2} u_{2 x}\right)\left(u_{1}-u_{2}\right)_{x}^{+} d x+ \\
& +\int_{-1}^{1}\left(R_{a}\left(x, t, u_{1}\right)-R_{e}\left(x, u_{1}\right)-R_{a}\left(x, t, u_{2}\right)+R_{e}\left(x, u_{2}\right)\right)\left(u_{1}-u_{2}\right)^{+} d x .
\end{aligned}
$$

Since the operator $A\left(u_{x}\right):=\varrho(x)\left|u_{x}\right|^{p-2} u_{x}$ is nondecreasing, by (5) and integrating on ($0, t$) we have

$$
\begin{align*}
\int_{-1}^{1}\left(u_{1}(x, t)-u_{2}(x, t)\right)^{+2} d x & \leqslant \int_{-1}^{1}\left(u_{01}(x)-u_{02}(x)\right)^{+2} d x+ \tag{10}\\
& +2 L \int_{0}^{t} \int_{-1}^{1}\left(u_{1}(x, s)-u_{2}(x, s)\right)^{+2} d x d s
\end{align*}
$$

By the Gronwall lemma, it follows the uniqueness of the solution.

3. Subsolutions-supersolutions.

We assume that
(11) $Q_{1}(x) \leqslant Q(x, t) \leqslant Q_{2}(x)$, with $Q_{1}, Q_{2} \in C([-1,1]), Q_{1} \geqslant 0$ and $Q_{2}>0$.

We consider the stationary problems
$(\mathrm{PS})_{1}\left\{\begin{array}{l}-\left(\varrho(x)\left|v_{x}\right|^{p-2} v_{x}\right)_{x}=Q_{1}(x) \beta(v)-R_{e}(x, v), \quad \text { in }(-1,1) \\ \left(\varrho(x)\left|v_{x}\right|^{p-2} v_{x}\right)(\pm 1)=0\end{array}\right.$
$(\mathrm{PS})_{2} \quad\left\{\begin{array}{l}-\left(\varrho(x)\left|u_{x}\right|^{p-2} u_{x}\right)_{x}=Q_{2}(x) \beta(u)-R_{e}(x, u), \quad \text { in }(-1,1) \\ \left(\varrho(x)\left|u_{x}\right|^{p-2} u_{x}\right)_{x}(\pm 1)=0\end{array}\right.$
A subsolution for (PS $)_{1}$ is given by the function

$$
\underline{v}(x)=-10-a|x|^{p^{*}}-b, \quad \forall x \in[-1,1]
$$

with $a<0, b>0,10<a+b$, suitable constants to be chosen later with $1 / p+1 / p^{*}=1$.

In fact

$$
\left|\underline{v}_{x}(x)\right|^{p-2} \underline{v}_{x}(x)=\left(|a| p^{*}\right)^{p-1}|x| \operatorname{sgn} x, \quad\left(\left(p^{*}-1\right)(p-1)=1\right) .
$$

Hence,

$$
-\left(k\left(1-x^{2}\right)\left|\underline{v}_{x}\right|^{p-2} \underline{v}_{x}\right)_{x}=-k\left(|a| p^{*}\right)^{p-1}\left(1-3 x^{2}\right) .
$$

We want that

$$
-k\left(|a| p^{*}\right)^{p-1}\left(1-3 x^{2}\right) \leqslant Q_{1}(x) \beta(\underline{v})-R_{e}(x, \underline{v})
$$

Since, $\underline{v}(x) \leqslant-10-b-a$, we have by (3) that
$Q_{1}(x) \beta(\underline{v})-R_{e}(x, \underline{v}) \geqslant-R_{e}(x,-10-b-a) \geqslant$

$$
\geqslant R_{e}(x, 10+b+a) \geqslant B(10+b+a)-A .
$$

Moreover, $-k\left(|a| p^{*}\right)^{p-1}\left(1-3 x^{2}\right) \leqslant 2 k\left(|a| p^{*}\right)^{p-1}$, therefore we choose a, b such that

$$
2 k\left(|a| p^{*}\right)^{p-1} \leqslant(10+b+a) B-A, \quad \text { with }(10+b+a) B>A
$$

A supersolution for (PS $)_{2}$ is given by the function

$$
\bar{u}(x)=-10+a|x|^{p^{*}}+b, \quad \forall x \in[-1,1]
$$

with a, b suitable constants, with $a<0, b>0,10<a+b$ as before, $1 / p+1 / p^{*}=1$.

In fact
$\left|\bar{u}_{x}(x)\right|^{p-2} \bar{u}_{x}(x)=-\left(|a| p^{*}\right)^{p-1}|x|^{\left(p^{*}-1\right)(p-1)} \operatorname{sgn} x=-\left(|a| p^{*}\right)^{p-1}|x| \operatorname{sgn} \mathrm{x}$.
Hence,

$$
-\left(k\left(1-x^{2}\right)\left|\bar{u}_{x}\right|^{p-2} \bar{u}_{x}\right)_{x}=k\left(|a| p^{*}\right)^{p-1}\left(1-3 x^{2}\right) .
$$

We require that

$$
k\left(|a| p^{*}\right)^{p-1}\left(1-3 x^{2}\right) \geqslant Q_{2}(x) \beta(\bar{u})-R_{e}(x, \bar{u})
$$

Since,

$$
\bar{u}(x) \geqslant-10+a+b,
$$

we have

$$
\begin{aligned}
Q_{2}(x) \beta(\bar{u}) & -R_{e}(x, \bar{u}) \leqslant \\
& \leqslant \widetilde{Q}_{2} M-R_{e}(x,-10+a+b) \leqslant \widetilde{Q}_{2} M-(-10+a+b) B+A,
\end{aligned}
$$

because of (3), where $\widetilde{Q}_{2}:=\max \left\{Q_{2}(x), x \in[-1,1]\right\}$ and M is such that $\beta(u) \leqslant M$, for any $u \in \mathbb{R}$.

Moreover, $k\left(|a| p^{*}\right)^{p-1}\left(1-3 x^{2}\right) \geqslant-2 k\left(|a| p^{*}\right)^{p-1}$, therefore we want that a, b verify
$2 k\left(|a| p^{*}\right)^{p-1} \leqslant(-10+a+b) B-\left(A+\widetilde{Q}_{2} M\right)$,

$$
\text { with }(-10+a+b) B>A+\widetilde{Q}_{2} M
$$

Now, it is possible to prove the following result
THEOREM 3. If (1)-(5) and (11), hold the solution u of $\left(\mathrm{P}_{1}\right)$ with $u_{0} \in$ $\in[\underline{v}(x), \bar{u}(x)]$ verifies

$$
\underline{v}(x) \leqslant u(x, t) \leqslant \bar{u}(x), \quad \forall(x, t) \in Q_{T}
$$

Proof. Multiplying by $(u-\bar{u})^{+}$and integrating on $(-1,1)$, we obtain

$$
\begin{align*}
& (1 / 2) d / d t \int_{-1}^{1}(u-\bar{u})^{+2} d x \leqslant \tag{12}\\
& \leqslant-\int_{-1}^{1}\left(\varrho(x)\left|u_{x}\right|^{p-2} u_{x}-\varrho(x)\left|\bar{u}_{x}\right|^{p-2} \bar{u}_{x}\right)(u-\bar{u})_{x}^{+} d x+ \\
& +\int_{-1}^{1}\left(R_{a}(x, t, u)-R_{e}(x, u)-R_{a}(x, \bar{u})+R_{e}(x, \bar{u})\right)(u-\bar{u})^{+} d x
\end{align*}
$$

where $R_{a}(x, \bar{u})=Q_{2}(x) \beta(\bar{u})$.

Since $A\left(u_{x}\right):=-\varrho(x)\left|u_{x}\right|^{p-2} u_{x}$ is a nondecreasing operator, we get

$$
\begin{align*}
& (1 / 2) d / d t \int_{-1}^{1}(u-\bar{u})^{+2} d x \leqslant \int_{-1}^{1}\left(R_{a}(x, t, u)-R_{e}(x, u)-R_{a}(x, t, \bar{u})+\right. \tag{13}\\
& \\
& \left.\quad+R_{e}(x, \bar{u})+R_{a}(x, t, \bar{u})-R_{a}(x, \bar{u})\right)(u-\bar{u})^{+} d x .
\end{align*}
$$

Now, (5) gives us

$$
\begin{align*}
& (1 / 2) d / d t \int_{-1}^{1}(u-\bar{u})^{+2} d x \leqslant L \int_{-1}^{1}(u-\bar{u})^{+2} d x+ \tag{14}\\
& \quad+\int_{-1}^{1}\left(Q(x, t)-Q_{2}(x)\right) \beta(\bar{u})(u-\bar{u})^{+} d x \leqslant L \int_{-1}^{1}(u-\bar{u})^{+2} d x .
\end{align*}
$$

Integrating on $(0, t)$ and by the Gronwall lemma, one has

$$
u(x, t) \leqslant \bar{u}(x), \quad \forall(x, t) \in Q_{T}
$$

In a similar way one proves that

$$
u(x, t) \geqslant \underline{v}(x), \quad \forall(x, t) \in Q_{T} .
$$

If we denote with F the Poincaré map defined by

$$
F\left(u_{0}(x)\right)=u(x, 1)
$$

(u is the solution of $\left(\mathrm{P}_{1}\right)$), to apply the Schauder fixed point theorem in the space $L^{\infty}(-1,1)$, we need of a closed and convex set $K \subset L^{\infty}(-1,1)$ and to show that
i) $F(K) \subset K$;
ii) $\left.F\right|_{K}$ is continuous;
iii) $F(K)$ is relatively compact in $L^{\infty}(-1,1)$.

Define

$$
K:=\left\{w \in L^{\infty}(-1,1): \underline{v}(x) \leqslant w(x) \leqslant \bar{u}(x)\right\}
$$

it is easy to prove that K is a closed, convex and nonempty set.
Now, i) it follows from the Theorem 3 because we have showed that $F[\underline{v}(x), \bar{u}(x)] \subset[\underline{v}(x), \bar{u}(x)]$.

Lemma 4. With the assumptions of the Theorem 3 , let $u_{0 n}, u_{0} \in K$ be such that $u_{0 n} \rightarrow u_{0}$ in $L^{\infty}(-1,1)$ as $n \rightarrow \infty$. Then, if u_{n} (respectively) u are the solutions of $\left(\mathrm{P}_{1}\right)$ with initial data $u_{0 n}$ and u_{0} respectively, we have that $u_{n}(x, t) \rightarrow u(x, t)$ in $L^{\infty}(-1,1)$ as $n \rightarrow \infty, \forall t \in[0, T]$.

Proof. Subtracting member to member and multiplying by $\operatorname{sgn}^{+}\left(u_{n}-u\right) \in V$, after an integration on Q_{t} we have

$$
\begin{equation*}
\int_{0}^{t} \int_{-1}^{1}\left(u_{n}-u\right)_{s} \operatorname{sgn}^{+}\left(u_{n}-u\right) d x d s- \tag{15}
\end{equation*}
$$

$$
-\int_{0}^{t} \int_{-1}^{1}\left[\left(\varrho(x)\left|u_{n x}\right|^{p-2} u_{n x}\right)_{x}-\left(\varrho(x)\left|u_{x}\right|^{p-2} u_{x}\right)_{x}\right] \operatorname{sgn}^{+}\left(u_{n}-u\right) d x d s=
$$

$$
=\int_{0-1}^{t} \int^{1}\left(R_{a}\left(x, s, u_{n}\right)-R_{e}\left(x, u_{n}\right)-R_{a}(x, s, u)+R_{e}(x, u)\right) \operatorname{sgn}^{+}\left(u_{n}-u\right) d x d s
$$

by which

$$
\begin{align*}
& \int_{-1}^{1}\left(u_{n}(t)-u(t)\right)^{+} d x- \tag{16}\\
&-\int_{-1}^{1}\left(u_{0 n}(x)-u_{0}(x)\right)^{+} d x \leqslant L \int_{0}^{t} \int_{-1}^{1}\left(u_{n}(s)-u(s)\right)^{+} d x d s
\end{align*}
$$

The Gronwall lemma gives us

$$
\begin{equation*}
\int_{-1}^{1}\left(u_{n}(t)-u(t)\right)^{+} d x \leqslant \exp (L T) \int_{-1}^{1}\left|u_{0 n}(x)-u_{0}(x)\right| d x \tag{17}
\end{equation*}
$$

Changing $u(t)$ with $u_{n}(t)$, one has

$$
\begin{equation*}
\int_{-1}^{1}\left|u_{n}(t)-u(t)\right| d x \leqslant \exp (L T) \int_{-1}^{1}\left|u_{0 n}(x)-u_{0}(x)\right| d x \tag{18}
\end{equation*}
$$

Since $u_{0 n}$ converges in $L^{\infty}(-1,1)$ to u_{0} as $n \rightarrow \infty$ we have that $u_{n}(t)$ converges in $L^{1}(-1,1)$ and a.e. to $u(t)$ as n goes to infinity.

As $u_{n}(x, t) \in K$, by the Lebesgue theorem, one has that $u_{n}(\cdot, t)$ strongly converges to $u(\cdot, t)$ in $L^{p}(-1,1), \forall 1 \leqslant p \leqslant+\infty$. This proves ii).

The proof that $F(u)$ is relatively compact follows by a result of [2], where it is showed that $V \subset L^{\infty}(-1,1)$, with compact embedding, for $p>2$.

Now, $F(K)$ is bounded in V and by the quoted result, it follows that $F(K)$ is relatively compact in $L^{\infty}(-1,1)$. Then, by the Schauder fixed point theorem, there exists a fixed point for the Poincaré map F. This fixed point is a periodic solution for (P).

If together to $\left(\mathrm{P}_{1}\right)$, we consider the problems
(ㄹ) $\begin{cases}z_{t}-\left(\varrho(x)\left|z_{x}\right|^{p-2} z_{x}\right)_{x}=R_{a}(x, t, z)-R_{e}(x, z), & \text { in } Q_{T} \\ \left(\varrho(x)\left|z_{x}\right|^{p-2} z_{x}\right)(\pm 1, t)=0, & \text { in }(0, T) \\ z(x, 0)=\underline{v}(x) & \text { in }(-1,1)\end{cases}$
$(\overline{\mathrm{P}}) \begin{cases}w_{t}-\left(\varrho(x)\left|w_{x}\right|^{p-2} w_{x}\right)_{x}=R_{a}(x, t, w)-R_{e}(x, w), & \text { in } Q_{T} \\ \left(\varrho(x)\left|w_{x}\right|^{p-2} w_{x}\right)(\pm 1, t)=0, & \text { in }(0, T) \\ w(x, 0)=\bar{u}(x), & \text { in }(-1,1)\end{cases}$
as it was proved in the Theorem 3 , for the solution of ($\underline{\text { P }}$) we have $\underline{v} \leqslant$ $\leqslant F(\underline{v})$, while for the solution of $(\overline{\mathrm{P}})$ one has $F(\bar{u}) \leqslant \bar{u}$.

If we define by recurrence the sequences

$$
z_{1}=F(\underline{v}), \ldots, z_{n}=F\left(z_{n-1}\right), \ldots
$$

and

$$
w_{1}=F(\bar{u}), \ldots, w_{n}=F\left(w_{n-1}\right), \ldots
$$

the Picar iterates $\left\{z_{n}\right\}$ and $\left\{w_{n}\right\}$ makes two sequences, the first one is nondecreasing, the second one nonincreasing regard to the pointwise ordering,

$$
\underline{v} \leqslant z_{1} \leqslant \ldots \leqslant z_{n} \leqslant w_{n} \leqslant \ldots \leqslant w_{1} \leqslant \bar{u},
$$

with

$$
\left\|z_{n}(1)\right\|_{L^{\infty}(-1,1)} \leqslant C \text { and }\left\|w_{n}(1)\right\|_{L^{\infty}(-1,1)} \leqslant C .
$$

There exist the following pointwise limits

$$
\begin{align*}
\lim _{n} z_{n}(x, 1) & =\underline{z}(x, 1) \tag{19}\\
\lim _{n} w_{n}(x, 1) & =\bar{w}(x, 1) . \tag{20}
\end{align*}
$$

By the Lebesgue theorem, the convergence in (19) and (20) is uniform.

Since F is a continuous map, $\underline{z}(x, 1)=\lim _{n} z_{n}(x, 1)=\lim _{n} F\left(z_{n-1}\right)=$ $=F(\underline{z}(x, 1))$ and $\bar{w}(x, 1)=F(\bar{w}(x, 1))$.

Thus, $\underline{z}(x, 1)$ and $\bar{w}(x, 1)$ are the smallest respctively greatest periodic solutions of (P) in the ordered interval $[\underline{v}(x), \bar{u}(x)]$ of $L^{\infty}(-$ $-1,1)$.

REFERENCES

[1] M. I. Budyko, The effect of solar radiation variations on the climate of the Earth, Telles, 21 (1969), pp. 611-619.
[2] J. I. DIaz, Mathematical analysis of some diffusive energy balance models in climatology, in Mathematics, Climate and Environment, eds. J. I. Diaz and J. L. Lions, Masson (1993), pp. 28-56.
[3] J. I. Diaz - M. A. Herrero, Estimates of the support of the solutions of some nonlinear elliptic and parabolic equations, Proceedings of Royal Soc. of Edinburgh, 89 A (1981), pp. 249-258.
[4] G. Hetzer, Forced periodic oscillations in the climate system via an energy balance model, Comm. Math. Univ. Carolinae, 28, 4 (1987), pp. 593-401.
[5] G. Hetzer, A parameter dependent time-periodic reaction-diffusion equation from climate modeling; S-shapedness of the principal branch of fixed points of the time 1-map, Differential and Integral Equations, vol. 7, no. 5 (1994), pp. 1419-1425.
[6] O. A. Ladyzenskaja - V. A. Solonnikov - N. N. Ural'ceva, Linear and Quasilinear equations of parabolic type, Transl. Math. Monographs, vol. 23, Amer. Math. Soc. Providence, R. I. (1969).
[7] W. P. Sellers, A global climate model based on the energy balance of the Earth-athmosphere system, J. Appl. Meteorol., 8 (1969), pp. 392-400.

Manoscritto pervenuto in redazione l'8 settembre 1998

