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On the Largest Conjugacy
Class Size in a Finite Group.

JOHN COSSEY(*) - TREVOR HAWKES (**)

We set

the largest conjugacy class size of G. Denoting by a(G) the set of prime
divisors of I G I and by Gp a Sylow p-subgroup of G, we will prove the fol-
lowing theorem.

THEOREM. Let G be an abelian-by-niLpotent finite group. Then

Our theorem fails for soluble groups in general: for a given E &#x3E; 0 we will

show how to construct a group G of derived length 3 for which

We begin by stating and proving three elementary lemmas for use in
the proof of the Theorem.
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LEMMA 1. Let H = AB with and A n B =1. Let x E B .

Then

PROOF. Let and let

be the unique decomposition with a E A and b E B . Then

and since and it follows that and b = b x . Thus
and and the result is clear.

LEMMA 2. Let G be a group of :re-length one for some set ~c of primes.
If b is an element of a Hall :re-subgroup B of G , then CB ( b ) is a Hall n-
subgroup 

PROOF. If T = On’ (G), the n’-residual of G, then CT(b) clearly con-
tains a Hall jr-subgroup of Thus we can assume that T = G and
hence by hypothesis that G = A.B, where A( = O~, (G) ) is the normal Hall
yr’-subgroup of G . But then by Lemma 1 we have

and the desired conclusion follows.

LEMMA 3. Let G = A.B with A n B =1. If g E G and g = ab with
a E A and b E B , then

In particular,

PROOF. Let h = vu be an element of G with and Then
Since every conjugate of g

can be written as a B-conjugate of b times an element of A . The inequali-
ty labelled now follows and the rest is clear.

THE PROOF OF THE THEOREM. We argue by induction on the number
of primes in Q ( G ). If I =1, then G is a p-group and it is clear that
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(a) holds. Therefore suppose that la(G) I ~ 2 , and let

be a non-trivial partition of 
Let R denote the nilpotent residual of G and note that, since R is

abelian by hypothesis, a system normalizer D of G is a complement to R
in G (cf. Doerk and Hawkes [1], Theorem IV, 5.18). Since D is nilpotent,
we can write

with Di E Hall,, 2 (D ); also

with Ri E Hall,, (R). For i = 1, 2 we set

and observe that Hi E Hallni(G). Let xi be an element of Hi belonging to a
conjugacy class of largest size in Hi (thus I for
i = 1, 2), and write

with ri E Ri and di E Di . 2 }, and consider the action of Di
on Since (o(di ), ~ = 1 and Rj is abelian, by Proposition A, 12.5 of
Doerk and Hawkes [1] we have

and because D~ centralizes di, the two subgroups di] and are

Dj-invariant and are therefore normal in H. We set 
’

[Note for use below that A~ = Hj, that A~ n Bj = 1, and that A~ is a
normal subgroup of each conjugate According to Equation (3) we
can write rj = with aj E Aj and and then we obtain

with bj = cj dj E Since it follows that bi
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commutes with We aim to show that the element satis-

fies

For by induction we have

and since U a(H2) = a(G), the conclusion of the Theorem will then
follow.

As before, 2}. As our first step in justifying the in-
equality labelled ( ~ ), we choose a conjugate H of Hi so that H n 
is a Hall .7r i-subgroup of Since bi is a n i-element of the centre of

evidently bi E H . Because bi and bj have relatively prime orders
and commute, we have

Now bj acts flXed-point-freely on and so 
Hence

[Here we have used the fact that H normalizes Ai.] Next we observe
that

Since metanilpotent groups have a-length one for all sets a of primes, we
can twice apply Lemma 2 (with H and then Hi in place of B) to conclude
that

Since bi E Bi and Hi = Ai Bi is a semidirect product of Ai by Bi, it follows
from Lemma 1 that

Hence from ( ~) we obtain
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Therefore, we have

If H is a conjugate of Hj with the property that H n CG ( bi is a Hall n j-
subgroup of CG ( bi bj), we similarly obtain

Thus, finally, we can deduce that

We have now justified the inequality labelled (E) and the Theorem is
proved.

Before we move to the promised construction of examples, we prove
another elementary lemma.

LEMMA 4. Let A be an abelian normal subgroup of prime index p
in a group G. If x and y are elements of G not in A, then

PROOF. Let C = CG (x). Since x E C and (x, A) = G, we have G = CA
and therefore

then y = x i a for some a E A and ... , ~ - 1 ~. Then we
have

and the conclusion of the lemma follows.
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A FAMILY OF EXAMPLES. Let p be a prime, p ~ 5, and let q be a prime
dividing p - 1. Let E be a non-abelian group of order pq. Thus E = PQ,
where Zp = P = Op (E) = F(E), the Fitting subgroup of E, and Zq=- Q E
E Sy§ (E ); moreover, the non-trivial elements of P fall into (p - 1 )/q orbits
of length q under the action by conjugation of Q. We now define two
abelian groups A and B on which E acts as an operator group.

(A) If q = 2, let A be a cyclic group of order 2n (n ~ 3), and let E act
on A with P as the kernel of the action so that the elements of the non-

identity coset of P in E act on A by inversion, sending each a E A to its
inverse.

If q &#x3E; 2, let U be the trivial simple P-module over the field Fq of q-ele-
ments and let A = UE; thus A is isomorphic with the regular 
module, and, in particular, the regular Q-module.

(B) Next let V be the trivial simple Q-module over 1~p and let B = VE.
By easy applications of Mackey’s theorem for induced representations
we have:

(i) Bp Fp P and, in particular, [ _ ~ for all 
(ii) where r = ( p - 1 ) /q .

Let G be the semidirect product

where the action of E as a group of operators on A fl9 B is determined by
the action of E on A and B described above. In what follows we will use

multiplicative notation for A fl9 B when it is regarded as a subgroup AB
of G. Evidently BP is a Sylow P-subgroup of G and AQ is a Sylow q-sub-
group of G. Set

Since

and p -&#x3E; 5, it follows that r ~ 2 and hence that M ~ 2. In fact, it is easy to
see that by judicious choice of p and q we can make M arbitrarily large.
We will show that
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Step 1: We assert that

Since Bp is a regular IFp P-module, the group BP is isomorphic with
and I = p . The conjugacy classes of BP contained in B

obviously have lengths 1 or p , while elements x in BPBB belong to class-
es of length 1 by Lemma 4. Thus Assertion (~, ) is

justified.

Step 2: We now assert that

and

The conjugacy classes of AQ contained in the abelian normal subgroup A
obviously have length 1 or q . In the case q = 2, as well as in the case
q &#x3E; 2 , it is easy to see from the action of Q on A that CA (Q) I = q . Hence,
if it follows from Lemma 4 that

Assertion (p) is now clear.

Step 3: Our next assertion is that

when q = 2 , and

when q &#x3E; 2 .

Let x e G, and let y be a generator of Q. We consider three cases.

Case 1: We have x Since G/AB(= E) is a Frobenius group, AB(x)
is conjugate to ABQ, and therefore in calculating we can suppose
without loss of generality that Since x, like y, acts fixed-

point-freely on P, we have = ABQ, and so [ =
= 

. By Lemma 4 we have
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Since the restriction BQ of B to Q is the sum of a trivial module and r reg-
ular modules, we have I hence from (v) we conclude
that

We note that pq divides in this case because &#x3E; ( q -1 ) r ~ r ~
~ 2 and by assumption % * 3.

Case 2: We have x E ABPBAB . Since ABP/AB is self-centralizing in
GIAB, it follows that CG (x) ~ ABP and hence from Lemma 4 that

Now P centralizes A and BP is a
regular module, and therefore

Hence

in this case, and again I is divisible by pq.

Case 3: We have x e AB . Since 4B is abelian, we have I =
= I E : , which is a divisor of pq . In this case I is smaller than

the values obtained for it is Cases 1 and 2.

Assertion (~) now follows from and (Q).
To justify the inequality labelled (x), we deduce from (~), (~), and (~)

that for q = 2
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Similarly, for q &#x3E; 2 , we obtain

Thus we have shown that ( x) holds for all values of q . Given E &#x3E; 0, it is
easy to find primes p and q so that I /M  ~ . Thus, as promised at the out-
set, we have shown the existence of {p, q}-groups of derived length 3
satisfying
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