RENDICONTI

 del
SEMINARIO MATEMATICO

 della Università di Padova
JOHn Cossey
 Trevor Hawkes
 On the largest conjugacy class size in a finite group

Rendiconti del Seminario Matematico della Università di Padova, tome 103 (2000), p. 171-179
http://www.numdam.org/item?id=RSMUP_2000__103__171_0
© Rendiconti del Seminario Matematico della Università di Padova, 2000, tous droits réservés.
L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

On the Largest Conjugacy Class Size in a Finite Group.

John Cossey (*) - Trevor Hawkes (**)

We set

$$
\operatorname{les}(G)=\max \left\{\left|G: C_{G}(g)\right|: g \in G\right\},
$$

the largest conjugacy class size of G. Denoting by $\sigma(G)$ the set of prime divisors of $|G|$ and by G_{p} a Sylow p-subgroup of G, we will prove the following theorem.

Theorem. Let G be an abelian-by-nilpotent finite group. Then

$$
\operatorname{les}(G) \geqslant \prod_{p \in \sigma(G)} \operatorname{lcs}\left(G_{p}\right) .
$$

Our theorem fails for soluble groups in general: for a given $\varepsilon>0$ we will show how to construct a group G of derived length 3 for which

$$
\operatorname{lcs}(G)<\varepsilon\left(\prod_{p \in \sigma(G)} \operatorname{lcs}\left(G_{p}\right)\right) .
$$

We begin by stating and proving three elementary lemmas for use in the proof of the Theorem.
${ }^{(*)}$ Indirizzo dell'A.: Mathematics Department, School of Mathematical Sciences, The Australian National University, Canberra, 0200, Australia.
${ }^{(* *)}$ Indirizzo dell'A.: Mathematics Institute, University of Warwick, Coventry CV4 7AL, England.

1991 Mathematics Subject Classification: 20 D 10.
The first-named author gratefully acknowledges the Science and Engineering Research Council Visiting Fellowship held at the University of Warwick while this work was undertaken.

Lemma 1. Let $H=A B$ with $A \unlhd H$ and $A \cap B=1$. Let $x \in B$. Then

$$
C_{H}(x)=C_{A}(x) C_{B}(x) .
$$

Proof. Let $h \in C_{H}(x)$, and let

$$
h=a b
$$

be the unique decomposition with $a \in A$ and $b \in B$. Then

$$
a b=(a b)^{x}=a^{x} b^{x},
$$

and since $a^{x} \in A$ and $b^{x} \in B$, it follows that $a=a^{x}$ and $b=b^{x}$. Thus $a \in C_{A}(x)$ and $b \in C_{B}(x)$, and the result is clear.

Lemma 2. Let G be a group of π-length one for some set π of primes. If b is an element of a Hall π-subgroup B of G, then $C_{B}(b)$ is a Hall π subgroup of $C_{G}(b)$.

Proof. If $T=\boldsymbol{O}^{\pi^{\prime}}(G)$, the π^{\prime}-residual of G, then $C_{T}(b)$ clearly contains a Hall π-subgroup of $C_{G}(b)$. Thus we can assume that $T=G$ and hence by hypothesis that $G=A B$, where $A\left(=\boldsymbol{O}_{\pi^{\prime}}(G)\right)$ is the normal Hall π^{\prime}-subgroup of G. But then by Lemma 1 we have

$$
C_{G}(b)=C_{A}(b) C_{B}(b),
$$

and the desired conclusion follows.
Lemma 3. Let $A \unlhd G=A B$ with $A \cap B=1$. If $g \in G$ and $g=a b$ with $a \in A$ and $b \in B$, then

$$
\left|G: C_{G}(g)\right| \leqslant|A|\left|B: C_{B}(b)\right| .
$$

In particular,

$$
\operatorname{les}(G) \leqslant \operatorname{les}(B)|A| .
$$

Proof. Let $h=v u$ be an element of G with $u \in A$ and $v \in B$. Then $g^{h}=a^{h} b^{v u}=a^{h}\left[u, b^{-v}\right] b^{v}$. Since $a^{h}\left[u, b^{-v}\right] \in A$, every conjugate of g can be written as a B-conjugate of b times an element of A. The inequality labelled (β) now follows and the rest is clear.

The proof of the Theorem. We argue by induction on the number of primes in $\sigma(G)$. If $|\sigma(G)|=1$, then G is a p-group and it is clear that
(α) holds. Therefore suppose that $|\sigma(G)| \geqslant 2$, and let

$$
\sigma(G)=\pi_{1} \dot{\cup} \pi_{2}
$$

be a non-trivial partition of $\sigma(G)$.
Let R denote the nilpotent residual of G and note that, since R is abelian by hypothesis, a system normalizer D of G is a complement to R in G (cf. Doerk and Hawkes [1], Theorem IV, 5.18). Since D is nilpotent, we can write

$$
D=D_{1} \times D_{2}
$$

with $D_{i} \in \operatorname{Hall}_{\pi_{2}}(D)$; also

$$
R=R_{1} \times R_{2}
$$

with $R_{i} \in \operatorname{Hall}_{\pi_{i}}(R)$. For $i=1,2$ we set

$$
H_{i}=R_{i} D_{i}
$$

and observe that $H_{i} \in \operatorname{Hall}_{\pi_{i}}(G)$. Let x_{i} be an element of H_{i} belonging to a conjugacy class of largest size in H_{i} (thus $\left|H_{i}: C_{H_{i}}\left(x_{i}\right)\right|=\operatorname{lcs}\left(H_{i}\right)$ for $i=1,2$), and write

$$
x_{i}=r_{i} d_{i}
$$

with $r_{i} \in R_{i}$ and $d_{i} \in D_{i}$. Let $\{i, j\}=\{1,2\}$, and consider the action of D_{i} on R_{j}. Since $\left(o\left(d_{i}\right),\left|R_{j}\right|\right)=1$ and R_{j} is abelian, by Proposition A, 12.5 of Doerk and Hawkes [1] we have

$$
R_{j}=\left[R_{j}, d_{i}\right] \times C_{R_{j}}\left(d_{i}\right)
$$

and because D_{j} centralizes d_{i}, the two subgroups $\left[R_{j}, d_{i}\right.$] and $C_{R_{j}}\left(d_{i}\right)$ are D_{j}-invariant and are therefore normal in H_{j}. We set

$$
A_{j}=\left[R_{j}, d_{i}\right] \quad \text { and } \quad B_{j}=C_{R_{j}}\left(d_{i}\right) D_{j}
$$

[Note for use below that $A_{j} \unlhd A_{j} B_{j}=H_{j}$, that $A_{j} \cap B_{j}=1$, and that A_{j} is a normal subgroup of each conjugate of H_{j}.] According to Equation (δ) we can write $r_{j}=a_{j} c_{j}$ with $a_{j} \in A_{j}$ and $c_{j} \in C_{R_{j}}\left(d_{i}\right)$, and then we obtain

$$
x_{j}=a_{j} b_{j}
$$

with $b_{j}=c_{j} d_{j} \in B_{j}$. Since $\left[d_{i}, c_{j}\right]=\left[d_{i}, d_{j}\right]=\left[c_{i}, c_{j}\right]=1$, it follows that b_{i}
commutes with b_{j}. We aim to show that the element $g=b_{i} b_{j}$ satisfies

$$
\left|G: C_{G}(g)\right| \geqslant \operatorname{lcs}\left(H_{1}\right) \operatorname{lcs}\left(H_{2}\right)
$$

For by induction we have

$$
\operatorname{lcs}\left(H_{i}\right) \geqslant \prod_{p \in \sigma\left(H_{i}\right)} \operatorname{lcs}\left(G_{p}\right),
$$

and since $\sigma\left(H_{1}\right) \cup \sigma\left(H_{2}\right)=\sigma(G)$, the conclusion of the Theorem will then follow.

As before, let $\{i, j\}=\{1,2\}$. As our first step in justifying the inequality labelled (ε), we choose a conjugate H of H_{i} so that $H \cap C_{G}\left(b_{i} b_{j}\right)$ is a Hall π_{i}-subgroup of $C_{G}\left(b_{i} b_{j}\right)$. Since b_{i} is a π_{i}-element of the centre of $C_{G}\left(b_{i} b_{j}\right)$, evidently $b_{i} \in H$. Because b_{i} and b_{j} have relatively prime orders and commute, we have

$$
C_{H}\left(b_{i} b_{j}\right)=C_{H}\left(b_{i}\right) \cap C_{H}\left(b_{j}\right)
$$

Now b_{j} acts fixed-point-freely on $A_{i}=\left[R_{i}, b_{j}\right]$, and so $C_{H}\left(b_{i} b_{j}\right) \cap A_{i} \leqslant$ $\leqslant C_{H}\left(b_{j}\right) \cap A_{i}=1$. Hence

$$
\left|C_{H}\left(b_{i} b_{j}\right)\right|=\left|C_{H}\left(b_{i} b_{j}\right) A_{i}\right| /\left|A_{i}\right| \leqslant\left|C_{H}\left(b_{i}\right) A_{i}\right| /\left|A_{i}\right|
$$

[Here we have used the fact that H normalizes A_{i}.] Next we observe that

$$
\left|C_{H}\left(b_{i}\right) A_{i}\right|=\left|C_{H}\left(b_{i}\right)\right|\left|A_{i}\right| /\left|C_{H}\left(b_{i}\right) \cap A_{i}\right|
$$

Since metanilpotent groups have π-length one for all sets π of primes, we can twice apply Lemma 2 (with H and then H_{i} in place of B) to conclude that
(η)

$$
\left|C_{H}\left(b_{i}\right)\right|=\left|C_{H_{i}}\left(b_{i}\right)\right|
$$

Since $b_{i} \in B_{i}$ and $H_{i}=A_{i} B_{i}$ is a semidirect product of A_{i} by B_{i}, it follows from Lemma 1 that

$$
\left|C_{H_{i}}\left(b_{i}\right)\right|=\left|C_{A_{i}}\left(b_{i}\right)\right|\left|C_{B_{i}}\left(b_{i}\right)\right|
$$

Hence from (ζ) we obtain
(ı)

$$
\begin{aligned}
\mid C_{H}\left(b_{i} b_{j} \mid\right. & \leqslant\left|C_{H}\left(b_{i}\right)\right| /\left|C_{A_{i}}\left(b_{i}\right)\right| \\
& =\left|C_{H_{i}}\left(b_{i}\right)\right| /\left|C_{A_{i}}\left(b_{i}\right)\right| \\
& \left.=\left|C_{B_{i}}\left(b_{i}\right)\right| \quad \quad \text { by }(\theta)\right) .
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
\left|H: C_{H}\left(b_{i} b_{j}\right)\right| & =|H| /\left|C_{H}\left(b_{i} b_{j}\right)\right| \\
& \geqslant|H| /\left|C_{B_{i}}\left(b_{i}\right)\right| \quad(\text { by }(\iota)) \\
& =\left|A_{i}\right|\left|B_{i}: C_{B_{i}}\left(b_{i}\right)\right| \\
& \geqslant\left|H_{i}: C_{H_{\imath}}\left(x_{i}\right)\right| \quad \text { (by Lemma 3) } \\
& =\operatorname{lcs}\left(H_{i}\right)
\end{aligned}
$$

If \widetilde{H} is a conjugate of H_{j} with the property that $\widetilde{H} \cap C_{G}\left(b_{i} b_{j}\right)$ is a Hall $\pi_{j}-$ subgroup of $C_{G}\left(b_{i} b_{j}\right)$, we similarly obtain

$$
\left|\widetilde{H}: C_{\widetilde{H}}\left(b_{i} b_{j}\right)\right| \geqslant \operatorname{lcs}\left(H_{j}\right)
$$

Thus, finally, we can deduce that

$$
\begin{aligned}
\left|C: C_{G}\left(b_{i} b_{j}\right)\right| & =\left|H: C_{H}\left(b_{i} b_{j}\right)\right|\left|\widetilde{H}: C_{\widetilde{H}}\left(b_{i} b_{j}\right)\right| \\
& \geqslant \operatorname{lcs}\left(H_{i}\right) \operatorname{lcs}\left(H_{j}\right)
\end{aligned}
$$

We have now justified the inequality labelled (ε) and the Theorem is proved.

Before we move to the promised construction of examples, we prove another elementary lemma.

Lemma 4. Let A be an abelian normal subgroup of prime index p in a group G. If x and y are elements of G not in A, then

$$
\left|x^{G}\right|=\left|y^{G}\right|
$$

Proof. Let $C=C_{G}(x)$. Since $x \in C$ and $\langle x, A\rangle=G$, we have $G=C A$ and therefore

$$
\left|x^{G}\right|=|C A: C|=|A: A \cap C|=\left|A: C_{A}(x)\right|
$$

If $y \in G \backslash A$, then $y=x^{i} a$ for some $a \in A$ and $i \in\{1, \ldots, p-1\}$. Then we have

$$
C_{A}(y)=C_{A}\left(x^{i}\right)=C_{A}\left(\left\langle x^{i}\right\rangle\right)=C_{A}(\langle x\rangle)=C_{A}(x)
$$

and the conclusion of the lemma follows.

A family of examples. Let p be a prime, $p \geqslant 5$, and let q be a prime dividing $p-1$. Let E be a non-abelian group of order $p q$. Thus $E=P Q$, where $Z_{p} \cong P=\boldsymbol{O}_{p}(E)=\boldsymbol{F}(E)$, the Fitting subgroup of E , and $Z_{q} \cong Q \in$ $\in \operatorname{Syl}_{q}(E)$; moreover, the non-trivial elements of P fall into $(p-1) / q$ orbits of length q under the action by conjugation of Q . We now define two abelian groups A and B on which E acts as an operator group.
(A) If $q=2$, let A be a cyclic group of order $2^{n}(n \geqslant 3)$, and let E act on A with P as the kernel of the action so that the elements of the nonidentity coset of P in E act on A by inversion, sending each $a \in A$ to its inverse.

If $q>2$, let U be the trivial simple P-module over the field \mathbb{F}_{q} of q-elements and let $A=U^{E}$; thus A is isomorphic with the regular $\mathbb{F}_{q}(E / P)$ module, and, in particular, $A_{Q} \cong \mathbb{F}_{q} Q$, the regular Q-module.
(B) Next let V be the trivial simple Q-module over \mathbb{F}_{p} and let $B=V^{E}$. By easy applications of Mackey's theorem for induced representations we have:
(i) $B_{P} \cong \mathrm{~F}_{p} P$ and, in particular, $\left|C_{B}(x)\right|=p$ for all $1 \neq x \in P$;
(ii) $B_{Q} \cong V \oplus r \mathbb{F}_{p} Q$, where $r=(p-1) / q$.

Let G be the semidirect product

$$
G=[A \oplus B] E,
$$

where the action of E as a group of operators on $A \oplus B$ is determined by the action of E on A and B described above. In what follows we will use multiplicative notation for $A \oplus B$ when it is regarded as a subgroup $A B$ of G. Evidently $B P$ is a Sylow P-subgroup of G and $A Q$ is a Sylow q-subgroup of G. Set

$$
M= \begin{cases}\min \left\{2^{n-2}, p^{r-1}\right\} & \text { if } q=2, \text { and } \\ \min \left\{q^{q-2}, p^{r-1}\right\} & \text { if } q>2\end{cases}
$$

Since

$$
r=(p-1) / q
$$

and $p \geqslant 5$, it follows that $r \geqslant 2$ and hence that $M \geqslant 2$. In fact, it is easy to see that by judicious choice of p and q we can make M arbitrarily large. We will show that

$$
\begin{equation*}
\operatorname{lcs}(B P) \operatorname{lcs}(A Q) \geqslant M \operatorname{lcs}(G) . \tag{к}
\end{equation*}
$$

Step 1: We assert that
(λ)

$$
\operatorname{lcs}(B P)=p^{p-1} .
$$

Since B_{P} is a regular $\mathbb{F}_{p} P$-module, the group $B P$ is isomorphic with $Z_{p} \ell_{\text {reg }} Z_{p}$ and $\left|C_{B}(P)\right|=p$. The conjugacy classes of $B P$ contained in B obviously have lengths 1 or p, while elements x in $B P \backslash B$ belong to classes of length $\left|B: C_{B}(P)\right|=p^{p-1}$ by Lemma 4. Thus Assertion (λ) is justified.

Step 2: We now assert that
(μ)

$$
\operatorname{les}(A Q)= \begin{cases}2^{n-1} & \text { if } q=2, \text { and } \\ q^{q-1} & \text { if } q>2 .\end{cases}
$$

The conjugacy classes of $A Q$ contained in the abelian normal subgroup A obviously have length 1 or q. In the case $q=2$, as well as in the case $q>2$, it is easy to see from the action of Q on A that $\left|C_{A}(Q)\right|=q$. Hence, if $x \in A Q \backslash A$, it follows from Lemma 4 that

$$
\left|x^{A Q}\right|=\left|A: C_{A}(Q)\right|= \begin{cases}2^{n-1} & \text { if } q=2, \text { and } \tag{v}\\ q^{q-1} & \text { if } q>2 .\end{cases}
$$

Assertion (μ) is now clear.
Step 3: Our next assertion is that
(ξ) $\quad \operatorname{les}(G)= \begin{cases}\max \left\{2 p^{p-1}, 2^{n-1} p^{p-r}\right\} & \text { when } q=2, \text { and } \\ \max \left\{q p^{p-1}, q^{q-1} p^{p-r}\right\} & \text { when } q>2 .\end{cases}$
Let $x \in G$, and let y be a generator of Q. We consider three cases.
Case 1: We have $x \notin A B P$. Since $G / A B(\cong E)$ is a Frobenius group, $A B\langle x\rangle$ is conjugate to $A B Q$, and therefore in calculating $\left|x^{G}\right|$, we can suppose without loss of generality that $x \in A B Q \backslash A B$. Since x, like y, acts fixed-point-freely on P, we have $C_{G}(x) \leqslant A B\langle x\rangle=A B Q$, and so $\left|x^{G}\right|=$ $=|P|\left|x^{A B Q}\right|$. By Lemma 4 we have

$$
\left|x^{A B Q}\right|=\left|y^{A B Q}\right|=\left|A B: C_{A B}(Q)\right|=\left|A: C_{A}(Q)\right|\left|B: C_{B}(Q)\right| .
$$

Since the restriction B_{Q} of B to Q is the sum of a trivial module and r regular modules, we have $\left|C_{B}(Q)\right|=p^{r+1}$; hence from (v) we conclude that
(π)

$$
\left|x^{G}\right|= \begin{cases}2^{n-1} p^{p-r} & \text { if } q=2, \quad \text { and } \\ q^{q-1} p^{p-r} & \text { if } q>2\end{cases}
$$

We note that $p q$ divides $\left|x^{G}\right|$ in this case because $p-r>(q-1) r \geqslant r \geqslant$ $\geqslant 2$ and by assumption $n \geqslant 3$.

Case 2: We have $x \in A B P \backslash A B$. Since $A B P / A B$ is self-centralizing in $G / A B$, it follows that $C_{G}(x) \leqslant A B P$ and hence from Lemma 4 that $\left|x^{G}\right|=|Q|\left|x^{A B P}\right|=\left|A B: C_{A B}(P)\right|$. Now P centralizes A and B_{P} is a regular module, and therefore

$$
\left|A B: C_{A B}(P)\right|=p^{p-1}
$$

Hence
(@)

$$
\left|x^{G}\right|=q p^{p-1}
$$

in this case, and again $\left|x^{G}\right|$ is divisible by $p q$.
Case 3: We have $x \in A B$. Since $A B$ is abelian, we have $\left|x^{G}\right|=$ $=\left|E: C_{E}(x)\right|$, which is a divisor of $p q$. In this case $\left|x^{G}\right|$ is smaller than the values obtained for it is Cases 1 and 2.

Assertion (ξ) now follows from (π) and (ϱ).
To justify the inequality labelled (κ), we deduce from $(\lambda),(\mu)$, and (ξ) that for $q=2$

$$
\begin{aligned}
\frac{\operatorname{lcs}(B P) \operatorname{lcs}(Q A)}{\operatorname{lcs}(G)} & =\frac{2^{n-1} p^{p-1}}{\max \left\{2 p^{p-1}, 2^{n-1} p^{p-r}\right\}} \\
& \geqslant \min \left\{\frac{2^{n-1} p^{p-1}}{2 p^{p-1}}, \frac{2^{n-1} p^{p-1}}{2^{n-1} p^{p-r}}\right\} \\
& =\min \left\{2^{n-2}, p^{r-1}\right\} \\
& =M
\end{aligned}
$$

Similarly, for $q>2$, we obtain

$$
\begin{aligned}
\frac{\operatorname{lcs}(B P) \operatorname{lcs}(Q A)}{\operatorname{lcs}(G)} & \geqslant \min \left\{\frac{q^{q-1} p^{p-1}}{q p^{p-1}}, \frac{q^{q-1} p^{p-1}}{q^{q-1} p^{p-r}}\right\} \\
& =\left\{q^{q-2}, p^{r-1}\right\} \\
& =M .
\end{aligned}
$$

Thus we have shown that (κ) holds for all values of q. Given $\varepsilon>0$, it is easy to find primes p and q so that $1 / M<\varepsilon$. Thus, as promised at the outset, we have shown the existence of $\{p, q\}$-groups of derived length 3 satisfying

$$
\operatorname{lcs}(G)<\varepsilon\left(\prod_{p \in \sigma(G)} \operatorname{lcs}\left(G_{p}\right)\right)
$$

REFERENCES

[1] K. Doerk - T. O. Hawkes, Finite Soluble Groups, Walter de Gruyter, BerlinNew York, 1992.

Manoscritto pervenuto in redazione l'1 settembre 1998.

