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On the Largest Conjugacy
Class Size in a Finite Group.

JOHN COSSEY (*) - TREVOR HAWKES (**)

We set
les(G) = max {|G:Cs(9)| : 9 G},

the largest conjugacy class size of G. Denoting by (@) the set of prime
divisors of |G| and by G, a Sylow p-subgroup of G, we will prove the fol-
lowing theorem.

THEOREM. Let G be an abelian-by-nilpotent finite group. Then

() les(@) = I les(G,).

pea(G)

Our theorem fails for soluble groups in general: for a given & > 0 we will
show how to construct a group G of derived length 3 for which

les (G) <& I1 les(G,)).

pea(G)

We begin by stating and proving three elementary lemmas for use in
the proof of the Theorem.
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LEMMA 1. Let H=AB with A<SH and ANB=1. Let xeB.
Then

Cr(x) = C4(x) Cp().

ProoF. Let heCy(x), and let
h=ab
be the unique decomposition with a € A and b e B. Then
ab= (ab)®*=a"b*,
and since a*e€A and b*eB, it follows that a =a® and b=b". Thus

aeCy(x) and b e Cg(x), and the result is clear.

LEMMA 2. Let G be a group of n-length one for some set 7 of primes.
If b is an element of a Hall n-subgroup B of G, then Cg(b) is a Hall 7-
subgroup of Cq(b).

ProOF. If T=07(G), the n'-residual of G, then Cr(b) clearly con-
tains a Hall n-subgroup of Cg(b). Thus we can assume that 7= G and
hence by hypothesis that G = AB, where A( = 0,..(®)) is the normal Hall
7'-subgroup of G. But then by Lemma 1 we have

Ce(b) = C4(b) Cp(b),

and the desired conclusion follows.

LEMMA 3. Let ASG=ABwith ANB=1.IfgeG and g = ab with
acA and beB, then
® |G :Ce(@)| < |A||B:Cp(b)].
In particular,
les(G) <les(B) |A]|.

PRrROOF. Let h=wvu be an element of G with €A and ve B. Then
g"=a"b™=a"[u, b~"]b". Since a”[u, b *]cA, every conjugate of g
can be written as a B-conjugate of b times an element of A. The inequali-
ty labelled (8) now follows and the rest is clear.

THE PROOF OF THE THEOREM. We argue by induction on the number
of primes in o(G). If |0(G)| =1, then G is a p-group and it is clear that
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(a) holds. Therefore suppose that |o(G)| =2, and let

0(G) =7, Um,

be a non-trivial partition of o(G).

Let R denote the nilpotent residual of G and note that, since R is
abelian by hypothesis, a system normalizer D of G is a complement to R
in G (cf. Doerk and Hawkes [1], Theorem IV, 5.18). Since D is nilpotent,
we can write

D =D; x D,,
with D; e Hall, (D); also
R=R,XR,,
with R; e Hall, (R). For i=1, 2 we set
H;=R;D;

and observe that H; e Hall,,(G). Let x; be an element of H; belonging to a
conjugacy class of largest size in H; (thus |H;:Cy,(x;)| =les (H;) for
i1=1, 2), and write

() x; =1;d;

with ;€ R; and d; e D;. Let {7, j} = {1, 2}, and consider the action of D,
on R;. Since (o(d;), |R;|) =1 and R; is abelian, by Proposition A, 12.5 of
Doerk and Hawkes [1] we have

(%) R;=[R;, d;]1x Cg(dy),

and because D; centralizes d;, the two subgroups [R;, d;] and CRj(di) are
Dj-invariant and are therefore normal in H;. We set

Aj= [R], dl] and BjZCRj(di) Dj.

[Note for use below that A; < A;B; = H;, that A;N B; =1, and that A; is a
normal subgroup of each conjugate of H;.] According to Equation (d) we
can write 7; = a;¢; with a;e€A; and ¢; e Cg,(d;), and then we obtain

@; = a;b;

with b] = C]djEB] Since [dia C]] = [di, d]] = [Ci, Cj] = 1, it follows that bi
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commutes with b;. We aim to show that the element g =b;b; satis-
fies

(e) |G :Cs(g) | = les (Hy)les (Hyp).

For by induction we have

les(H) = I les(Gy),

peo(H;)

and since o(H;) U 0(H,) = 0(@), the conclusion of the Theorem will then
follow.

As before, let {7, 5} = {1, 2}. As our first step in justifying the in-
equality labelled (&), we choose a conjugate H of H; so that H N Cg(b; b;)
is a Hall 7z ;-subgroup of C¢(b;b;). Since b; is a 7 ;-element of the centre of
Cs(b; b)), evidently b; € H. Because b; and b; have relatively prime orders
and commute, we have

Cr(b;b;) = Cy(b;) N Cy(b;).

Now b; acts fixed-point-freely on A; = [R;, b;], and so Cyx(b;b;) N A; <
<Cy(bj)NA;=1. Hence

© |Cr(b;bj) | = |Cu(b;b)A;|/|A;i| < |Cu(b)A;|/|A;].

[Here we have used the fact that H normalizes A;.] Next we observe
that

|Cu(b)A;| = |Cu(b) | |Ail/|Cu(b) NA;.

Since metanilpotent groups have z-length one for all sets 7 of primes, we
can twice apply Lemma 2 (with H and then H; in place of B) to conclude
that

(m |Cu(b;) | = |Cg,(b) |-

Since b; € B; and H; = A; B; is a semidirect product of A; by B;, it follows
from Lemma 1 that

6) |Ch,(b;) | = |Ca, (b)) || Cp,(b;) |-
Hence from () we obtain
|Cu(bib;| < |Cr(b;)|/]Ca,(b) |
® = | Cg,(b;) |/|Ca,(b;) |
= |Cp,(b) | (by (8)).
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Therefore, we have
|H : Cy(b;b;)| = |H|/|Cu(b;b)) |
= |H|/|Cp, (b)) | (by (1))
= |Ail|B;: Cg,(by) |
= |H;: Cy () | (by Lemma 3)
=les(H;).

If A is a conjugate of H; with the property that HNCy(b; b;) is a Hall 7 ;-
subgroup of Cg(b;b;), we similarly obtain

| H:Cq(b;b) | =les (H;).
Thus, finally, we can deduce that
|C: Ce(b;b) | = |H : Cy(b;b) || H: Cr(b;b;)|
= les (H;) les (H;).

We have now justified the inequality labelled (¢) and the Theorem is
proved.

Before we move to the promised construction of examples, we prove
another elementary lemma.

LEMMA 4. Let A be an abelian normal subgroup of prime index p
m a group G. If x and y are elements of G not in A, then

%] = |y®].
ProoF. Let C = Cg(x). Since x € C and (x, A) = G, we have G = CA
and therefore
x| =|CA:C|=|A:ANC|=|A:Ca(x)] .

If ye G\A, then y =x'a for some acA and ie {1, ..., p— 1}. Then we
have

Ca(y) =Ca(x?) = CA(<wi>) =Cya((x)) = C4(),

and the conclusion of the lemma follows.



176 John Cossey - Trevor Hawkes

A FAMILY OF EXAMPLES. Let p be a prime, p =5, and let g be a prime
dividing p — 1. Let E be a non-abelian group of order pq. Thus E = PQ,
where Z, =P = 0,(E) = F(E), the Fitting subgroup of E, and Z,=Qe
€ Syl, (E); moreover, the non-trivial elements of P fall into (p — 1)/q orbits
of length ¢ under the action by conjugation of Q. We now define two
abelian groups A and B on which E acts as an operator group.

(A) If ¢ =2, let A be a cyclic group of order 2" (n = 3), and let £ act
on A with P as the kernel of the action so that the elements of the non-
identity coset of P in E act on A by inversion, sending each ae A to its
inverse.

If ¢ > 2, let U be the trivial simple P-module over the field F, of g-ele-
ments and let A= U¥; thus A is isomorphic with the regular F, (E/P)-
module, and, in particular, Ao =F,Q, the regular Q-module.

(B) Next let V be the trivial simple Q-module over F, and let B = V*.
By easy applications of Mackey’s theorem for induced representations
we have:

(i) Bp=F,P and, in particular, |Cg(x)| =p for all 1 #xeP;
(i) Bo=V®rF,Q, where r=(p—1)/q.

Let G be the semidirect product
G=[A®B]E,

where the action of E as a group of operators on A @ B is determined by
the action of £ on A and B described above. In what follows we will use
multiplicative notation for A @ B when it is regarded as a subgroup AB
of G. Evidently BP is a Sylow P-subgroup of G and AQ is a Sylow g-sub-
group of G. Set

M_{min{2"‘2,p"1} if g=2, and
min {q?" %, p""1} if ¢g>2
Since

r=(p-1)/q

and p = 5, it follows that » = 2 and hence that M = 2. In fact, it is easy to
see that by judicious choice of p and ¢ we can make M arbitrarily large.
We will show that

(x) les (BP) les (AQ) = Mles (G).
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Step 1: We assert that
) les (BP) =p? 1.

Since Bp is a regular F,P-module, the group BP is isomorphic with
Zip lregZp and |Cp(P) | = p. The conjugacy classes of BP contained in B
obviously have lengths 1 or p, while elements « in BP\B belong to class-
es of length |B:Cg(P)| =p? ! by Lemma 4. Thus Assertion (1) is
justified.

Step 2: We now assert that

2»~1 if q=2, and

les (AQ) =
) cs (AQ) {qq—l it g>2.

The conjugacy classes of AQ contained in the abelian normal subgroup A
obviously have length 1 or g. In the case ¢ =2, as well as in the case
q > 2, it is easy to see from the action of @ on A that |C,(Q) | = q. Hence,
if xe AQ\A, it follows from Lemma 4 that

2"l if ¢=2, and

AQ| _ |4 - -
) |49 ] = |A:Ca(Q) | {qq_l if g>2.

Assertion (u) is now clear.

Step 3: Our next assertion is that

max {2p?~1, 2" 1pP~"1  when q=2, and
® lcs(G)={ {2p B _lp ) } q
max {qgp? "', q?"'p?~"} when ¢>2.

Let xe G, and let y be a generator of . We consider three cases.

Case 1: We have x ¢ ABP. Since G/AB(= E) is a Frobenius group, AB(x)
is conjugate to ABQ, and therefore in calculating |#¢|, we can suppose
without loss of generality that x e ABQ\AB. Since z, like y, acts fixed-
point-freely on P, we have Cg(x) <AB(x)=ABQ, and so |z¢|=
= |P||x#B?|. By Lemma 4 we have

|x459] = |y4P@| = |AB: Cap(Q) | = |A: C4(Q) | |B: Cp(@)|.
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Since the restriction By of B to Q is the sum of a trivial module and r reg-
ular modules, we have |Cz(Q)| =p"*!; hence from (v) we conclude
that

n=1pP=7r if g=2, and
) IwGI=~{ p q

¢ 'pP if g>2.

We note that pq divides |x¢| in this case because p —r> (¢ — 1)r=7r=
=2 and by assumption n = 3.

Case 2: We have x e ABP\AB. Since ABP/AB is self-centralizing in
G/AB, it follows that Cs(x) < ABP and hence from Lemma 4 that
|2¢| = |Q| |x*BF | = |AB : C43(P) |. Now P centralizes A and Bp is a
regular module, and therefore

|AB : C4p(P)| =pP~ 1.
Hence
© |2¢| =qp?~!
in this case, and again || is divisible by pq.
Case 3: We have xeAB. Since AB is abelian, we have |x¢|=

= |E : Cy(x) |, which is a divisor of pq. In this case || is smaller than
the values obtained for it is Cases 1 and 2.

Assertion (§) now follows from (;r) and (o).
To justify the inequality labelled (x), we deduce from (1), (x), and (&)
that for g =2

les (BP) les (QA) 2 lpr!
les (G) max {2p?~1, 2" " 1pPT}
on—1,p-1 m=1pp=1
= min p ) il
2pP~t  2rTlpror

=min{2""%, p""1}

=M.
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Similarly, for ¢ > 2, we obtain

les (BP)les (QA 4-1pp-1  g-1pp-1
es (BP)les (Q )Bmm{q p_l g _lp _T}
les (G) gp”? Q' p?

={q? % p "}
=M.

Thus we have shown that (k) holds for all values of ¢q. Given ¢ > 0, it is
easy to find primes p and q so that 1/M < ¢. Thus, as promised at the out-
set, we have shown the existence of {p, q}-groups of derived length 3
satisfying

les(G) <z ( T les(G,)).

pea(G)
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