
RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITÀ DI PADOVA

ELISA GAGE CASINI
Some remarks on G-actions with sections
Rendiconti del Seminario Matematico della Università di Padova,
tome 103 (2000), p. 157-169
<http://www.numdam.org/item?id=RSMUP_2000__103__157_0>

© Rendiconti del Seminario Matematico della Università di Padova, 2000, tous
droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico
della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RSMUP_2000__103__157_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Some Remarks on G-Actions with Sections.

ELISA GAGE CASINI (*)

ABSTRACT - This note is aimed at studying complete Riemannian manifolds acted
on by a Lie group of isometries, in the case the action admits sections. The ac-
tion is proved to be variationally complete and a Morse series is explicitly
computed (in the case of non-positive curvature). The Weyl chambers of a sec-
tion are studied.

1. Introduction.

In this note we will consider a complete Riemannian manifold (M , g ),
which is acted on isometrically by a closed Lie subgroup G of the full
isometry group I(M, g). In particular, we will restrict ourselves to the
case when the G-action admits sections, namely when there exists a
closed connected submanifold E which meets every G-orbit orthogonally.

The existence of a section is an important condition on the action; the
regular points of a section in fact parametrize, modulo coverings, the or-
bit space M/G . Such a condition on the G-action has been considered in
some basic papers by Conlon [5] and Palais and Terng [9] and more re-
cently it has been studied in interesting papers on hyperpolar and
asystatic actions (see among others [1] and [7]). In § 2 we prove some in-
teresting properties of sections (in the case they actually exist). These
properties have been used in [5], [9] and [10], but in the literature we
could not find a complete proof of the following well-known fact: regular
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points of a section E are dense in 2. Here we give an elementary proof of
this fact (Theorem 2.2), and are thus able to prove Conlon’s results in the
general case.

Bott [2] was the first to apply Morse theory to a particular manifold
admitting sections: he considered a compact connected Lie group acting
on itself by adjoint action. We here take his procedure under considera-
tion, applying it to the case of G-manifolds admitting sections with non-
positive sectional curvature. A first result is the variational completeness
of the action, i. e. we prove that Jacobi fields tangent to the orbits in two
points are induced by G, thus generalizing a similar result by Conlon [5].

Let G(x) be a principal orbit. Fix a regular point p in MBG(x). Bott
defines a Morse series depending on M , G(x) and p, in the follow-
ing way. Let ,S = S(M, G(x), p) be the set of geodesic segments of

(M, G(x) ) , i. e. geodesics starting in G(x) with orthogonal speed, ending
at p and parametrized with arc length. Define the index of a geodesic a E

G(x), p) to be the sum over t of the dimension of the Jacobi fields
induced by variations preserving S = S(M, G(x), p) and vanishing at
Q ( t ). Then this index is proven to be finite and the Morse series relative
to (M, G(x), p) is given by

where ~,( Q) is the index of Q .
When the action is variationally complete, the index can be rewritten as

where and d(Q(t)) = dim G(p) - dim G(a(t)).
Using a theorem due to Szenthe [11], and under a mild assumption on

the Weyl group of the section, we prove that the Morse series has an ex-
plicit expression of the following form.

THEOREM 1. Let (M, g) be a Riemannian G-manifold admitting
sections. Assume the manifold (M, g) has non-positive sectional curva-
ture and that the Weyl group WI is finite. Let G(x) be a principal orbit
and p e MBG(x) a regular point. Then the Morse series exists and we
have:
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where k is the cohomogeneity of the action and r a is the codimension of
the singular non-exceptional orbit of the first focal point of G(x) along a.

We then continue the study of the action by looking at the action of
the Weyl group on a given section X and dropping the assumption on the
curvature of the manifold. We generalize the concept of «walls» intro-
duced by Bott and prove the following:

THEOREM 2. Let (M, g) be a Riemannian G-manifoLd admitting
sections. Suppose the singular points of the action are all non-excep-
tionaL. Given a wall S , there exists a non-trivial invoLutive isometry g E
E W, fixing S pointwise. 

The set of walls is proven to be discrete. The components of

are called the Weyl chambers and the Weyl group induces a
permutation of them.

These results generalize similar ones by Conlon, who assumes the
manifold to be simply connected and the sections to be flat.

Szenthe considered also a similar situation ([11]). In his work, the set
of singular non-exceptional points of a section is investigated and the
group generated by reflections around this set is taken under considera-
tion. The relations between this group and the Weyl group are then
studied, and some sufficient conditions for them to coincide are found
(the sections are assumed to be simply connected and there are condi-
tions on the intersection points of walls). Our results somehow general-
ize these ones, using quite a different approach in dealing with the Weyl
group.

2. Some properties of sections.

Throughout the following, we will assume that the G-action on M ad-
mits sections. The aim of this section is to collect some results about sec-

tions, giving detailed proofs of them; we refer the reader to [4], [5], [9]
for standard notations and results.

Conlon in [5] proves most of the following results, but with a more re-
strictive definition of sections (which are called G - transversal do-

mains) : he assumes sections to be flat and totally geodesic submanifolds.
Here we consider the general case and we prove that all sections are to-
tally geodesic submanifolds. First of all, we prove:
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PROPOSITION 2.1. Let E be a section for M. The dimension of ~
equals the cohomogeneity of the action of G on M.

PROOF. It follows immediately from the very definition of section
that dim ~ ~ chm ( G , M), where chm ( G , M) denotes the cohomogeneity
of the G-action.

Let p E E be a regular point and b a tubular neighborhood around the
orbit. It is well known (see e.g. [4]) that b is diffeomorphic to the product
G(p) x Br, where Br is a ball of suitably chosen radius r in The
submanifold z n ’6 meets all orbits of b and consequently the restriction
to z n ’6 of the projection on the second factor II: x n is onto. By
Sard’s lemma it then follows that dim Br = chm ( G , M).

The content of the following basic theorem is well known in the liter-
ature, but we were not able to find a complete proof of it.

THEOREM 2.2. The set Erg of the regular points in E is open and
dense 

PROOF. We shall prove that in Z there can not be an open set wholly
made of singular points, that is, denoting = I n Mi, the set of
singular points in E, that  dim E. Obviously, if denotes
the set of singular orbit types and H is any isotropy subgroup, we
have

where the union is countable and M~H~ denotes the set of points whose
isotropy subgroups are conjugate to H.

It is then sufficient to prove that, for all H singular isotropy sub-
group, we have

Note that G acts on M(H) and that T n M(H) is a section for this action.
The previous proposition then makes ( ) equivalent to

Let G/H in Msing be an orbit, ’6 be a tubular neighborhood and T = G x
X H V the associated linear tube. Denoting by VH the subspace of V given
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by the points of V which are fixed by H, we get

It then follows chm ( G , MCH) = dim V .
Write V as so that W is a non-trivial H-invariant sub-

space of V. H being compact, the action of H on W is necessarily not
transitive and so chm (H, W) &#x3E; 0.

Clearly we then get

chm (H, V) ~ chm (H, VH) + chm (H, W) &#x3E; chm (H, VH) = dim VH.

On the other hand, dimension counting gives

and thus

This theorem enables us to prove another interesting property of sec-
tions, which shows that the assumption made by Conlon [5] for a section
to be totally geodesic is unnecessary.

THEOREM 2.3. Each section T is a totally geodesic submanifold.

PROOF. Since Ereg is dense in E, it is sufficient to prove the theorem
for geodesics starting at regular points.

Follow now the proof given in [9].

The previous theorem implies immediately that there exists only one
section passing through a regular point.

The following lemma has useful consequences. One can easily see
that the proof given in [5] works without the assumption of flat-
ness.

LEMMA 2.4 ([5]). Let q E M and S be a Gq-slice, where Gq is the
isotropy of q. Then for and for all section T through q, we
have:

As an easy corollary we obtain the following interesting proposi-
tion.
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PROPOSITION 2.5 ([5]).

(i) The isotropy of a point q E M acts transitively on the set of sec-
tions through q.

(ii) Let q E M, S be a Gq-sLice and Then there exists a section

through p and q.

The following useful property now follows easily.

PROPOSITION 2.6. Let q E M . For all v E there exists a sec-
tion T through q to which v is tangent.

PROOF. Use Proposition 2.5 (ii) and the following simple remark,
which replaces the role of flatness of a section:

If p, q are two points of a section E chosen to be sufficiently close,
with p = expq(v), then the geodesic y(t) = erpq (tv) lies in Z , since T is to-
tally geodesic.

3. Non positive sectional curvature, variational completeness and
morse theory.

We start with the following definiton.

DEFINITION 3.1 ([3]). A geodesic y : [0, 1 ] ---~ M is called transver-
sal if it meets the G-orbits orthogonally. A Jacobi field is called
transversal if it is induced by a variation made of transversal

geodesics.
Fix an orbit G(z) and a transversal geodesic y starting at G(z). De-

note y) the space of transversal Jacobi fields along the
transversal geodesic y .

The restriction to a transversal geodesic y of an infinitesimal motion
X gives rise to a transversal Jacobi field (induced by G). It is very natu-
ral to ask when the converse is true; this leads to the following:

DEFINITION 3.2 ([3]). The action of G on M is called variationally
complete if a transversal Jacobi field that is tangent to the G-orbits in
two different points of the underlying transversal geodesic y is induced
by G, i. e., it is the restriction to y of an infinitesimal motion.

We give a sufficient condition for the action to be variationally
complete.
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THEOREM 3.3. Let M be a G-manifold with non-positive sectional
curvature. If there exist sections for M, then the action is variationally
complete..

Conlon in [5] proves an analogous theorem, under stronger hypothe-
ses : he assumes the group G to be compact and the sections to be flat.
However, we can easily get rid of these assumptions, in the following
way. For as much as concerns the hypothesis on G, we just note that an
isometric action is in particular a proper action and it is well known that
this condition is a natural substitute for compactness.

By looking closely at Conlon’s proof, and applying the properties of
sections proved in § 2, it is easy to see that the crucial point is the non-
existence of conjugated points on a given section and this is excluded by
the assumption of non-positive sectional curvature.

4. Focal points and singular orbits.

We now show how the notion of focal point proves to be a very useful
tool in investigating the set of singular points of the G-action. In order to
determine the so-called -walls- of a section, we are now interested in de-
termining the set of points where a minimal geodesic meets orbits of
lower dimension. The focal locus of a principal orbit G( z ) turns out to be
of interest in this search.

Szenthe in [12] introduces the following description of focal points
which gives rise to a necessary and sufficient condition for an orbit to
have lower dimension.

Fix a principal orbit G(z) and a transversal geodesic y . The Jacobi
fields belonging y) can be characterized by the conditions
([6]):

denotes the

Weingarten operator). Among these, it is natural to consider the Jacobi
fields for which

(a) J(0) = 0 and those verifying

The y) then naturally splits as the direct sum of two
subspaces: the union of the conjugate loci of points belonging to G(z),
given by Jacobi fields verifying (a) and denoted by Jo (G(z), y), and the
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so-called strong Jacobi fields, given by Jacobi fields verifying (b) and de-
noted by ;Ss (G(z), y):

It is easily seen that dim y) = dim G(z).
Write a transversal Jacobi field J as J = Jo + Jg. The existence of sec-

tions guarantees that if at a point to E vanishes, then either Jo ( to ) = 0
(see [12]).

REMARK 4.1 ([12]). Strong Jacobi fields verify a sort of a variational
completeness.

In fact, note that if X E g ,then the restriction of X to y gives rise to a
strong Jacobi field. In order to see this, we must show that E

E Tz G(z). Since the action admits sections, the distribution (defined on
given is integrable. According to Frobenius’ theo-

rem, it must be also involutive, so we get that for all U, and
for all X E g

thanks to the well-known antisimmetry property of Ax (see e. g. [8]). It
follows that for all By applying this
fact to U = y ’ ( o ) the assertion follows.

In order to conclude, use the fact that the space of Killing fields
along y and the space of strong Jacobi fields both have dimension equal
to dim G(z).

DEFINITION 4.2 ([12]). A point x = y( 1:) E M is a strong focal point if
there exists a non-indentically zero strong Jacobi field J along y such
that J( z) = 0 .

The following theorem justifies the introduction of strong Jacobi
fields.

THEOREM 4.3. Suppose the action admits sections. Let G(z) be a
principal orbit. Then the orbit of a point x E M is singular non-excep-
tional if and only if x is a strong focal point for G(z).

PROOF. Assume first that x has a singular non-exceptional orbit. Ac-
cording to Proposition 2.6, there exists a section T through z and x .
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Then, since the isotropy subgroup of a regular point fixes Z pointwise,
we must have

(proper inclusion). Consequently, there is an X E g such that X(z) ~ 0
and X(x) = 0. Then the restriction of X to y gives rise to the required
strong Jacobi field.

Assume now that x is a strong focal point. Then there exists a Jacobi
field y) along y(t) = Exp ( tv ) and a with x = Exp ( to v )
and J( to ) = 0 . By applying now Remark 4 . 1 the assertion fol-

lows.

The case of non-positive curvature
In this case there are no conjugate points, so all Jacobi fields are

strong Jacobi fields. Therefore we once again get that the action is varia-
tionally complete.

Moreover, in this case Theorem 4.3 can be restated as:

THEOREM 4.4. Suppose that M has non-positive sectional curva-
ture and that the action admits sections. Let G(z) be a principal orbit.
Then the orbit of a point x E M is singulacr non-exceptional if and only
if x is a first focal point for G(x).

PROOF OF THEOREM 1. In order to prove Theorem 1, we now need
to find a sufficient condition for the existence of the Morse series, i. e. for
it to have only a finite number of terms. Let p E MBG(x) be a regular
point. In order to calculate the Morse series relative to G(x) and p,
we need to know:

(a) the geodesic segments a in S = S(M, G(x), p)
(b) the points where these meet orbits of lower dimension.

Let us start from (a). Suppose the Weyl group is finite. Let a E

E S(M, G(x), p). Since there exists a section T to

which Q is tangent and so a lies in ~ . In particular, p and so, by the
regularity of p, all the geodesics of S(M, G(x), p) belong to E. The
finiteness of the Weyl group guarantees then the finiteness of S.

Consider now (b). Recall from § 1 the expression for the Morse series
for variationally complete actions.

Theorem 4.3 tells us exactly which points are such that d (Q ( t ) ) ~ 0
and allows us to complete the proof of Theorem 1.
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5. Weyl chambers.

We now want to analyze the action induced by G on a section Z by
means of the Weyl group. More precisely, we want to generalize the con-
cepts of «walls » and of « Weyl chambers-, which naturally arise in the
theory of compact Lie groups (see Bott [2]) and which were further in-
vestigated by Conlon [5] and Szenthe [12] in the more general setting of
variationally complete actions.

We begin by individuating the natural candidates to be the walls of
the section.

LEMMA 5.1. and let Each compo-
nent of Sp is a closed, totally geodesic submanifold of Z.

PROOF. Sp is obviously closed in ~.
Let Consider

Clearly Exp (V) ç Sp and, in a sufficiently small neighborhood U of x E ~,
U n Sp = U n EXp (V).

Let K be the isotropy of any regular point in ~. Suppose that the ac-
tion does not have exceptional singular points, i. e. singular points whose
isotropy subgroup has the same dimension as K. Then the coin-

cides with the set of points p such that dim Gp &#x3E; dim K or, equiva-
lently, with the set of points p such that 

DEFINITION 5.2 ([5]). A subset S of T is called a singular submani-
fold if it is a component of ,Sp for p but it is not a proper subset of

any Sq (for q 

LEMMA 5.3. is a siugular submanifold, there exist a point
p e 5 and a neighborhood U of p in Z such that ,S n U n U.

PROOF. Follow Conlon’s proof to find a point p E S and a neighbor-
hood U of p in T such that Gy c Gp for all y E U and Gy = Gp for n

n U. Note that S is then a component of Sp.
Restrict, if necessary, U to a normal neighborhood of p . If x n

n U, then Gx c Gp and so Gx fixes the only minimal geodesic joining
x to p pointwise. In particular y is included in 

and so, if would be properly included in against
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its definition. It then follows Z,i, n UC S n U and the reverse inclusion
is obvious.

The following proposition is of significant interest and allows us to
call the singular submanifolds «walls» of the section.

PROPOSITION 5.4. Suppose all the singular points o, f the action are
non-exceptional. If S c E is a singutar submanifold, then S has codi-
mension 1 in Z.

PROOF. Note that codimzs * 1. and U as in the previous
lemma and choose is then a regular point. Consider the
geodesic y : [ 0, starting at x and meeting S orthogonally at
y(~,). For t  A, y is then minimal, while there exist two points x, x’ E
E G( x ) in U at which the distance of G(x) from the point E ,S is

achieved. If codimzs &#x3E; 1, then there would exist a point y e U B,S which
could be joined to x and x ’ with minimal geodesics taking values in Z. In
particular y would be a (strong) focal point for the orbit G(x) and so, by
Theorem 4.3, a singular point, against the construction of U.

PROOF OF THEOREM 2. While proving the previous proposition, a
point x ’ = g( x ) E G(x) was associated to a regular point x e Z . x ’ = g(x) is
a point of G(x) belonging to E and is on the other side of the «wall» ,S. As
x is regular, the element g E G determines a non-trivial element of the
Weyl group of Z. In order to prove Theorem 2, we wish to show that the
restriction of g to Z is an involutive isometry fixing ,S pointwise.

Let E U and g E W, defined as above. The proof is divided in
steps.

(I): g( U) = U and g fixes S pointwise.
We begin by showing g(~ ) _ ~ . We have

where r is the radius of U. The Weyl group Wz being discrete, the dis-
tance d(w(p), p) has a positive minimum d when w runs in the 
E W : a(p) ~p}; by choosing r  d/2 we are able to conclude g(p) = p.
Therefore, g is an isometry fixing the center of U, so g( U) = U. More-
over g fixes ,S pointwise, since S = ,Sp and g E Gp.

(2): g «changes sides» of U n S in UCZ.
By restricting U, we can assume U to be an open chart of T with coor-
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dinates (Y1, ..., where the submanifold S is Yk = 0 . Let U + = (y e
~!7:~~0}eC/’={~eJ7:~0}.~n U separates U in the two com-
ponents U + and U - . Let x E UB,S as above, if x E U + , then g(x) has
negative k-th coordinate, that is, g( U + ) n !7’ ~ 0. It then follows, g be-
ing continuous, g( U + ) = U - .

(3): 
It is sufficient to prove that (go v)2 = Id U. Let y E UBS and suppose

g 2 ( y ) ~ y . Take U to be a chart as above. Since 9 switches the sides of
U n S in U, the points g 2 ( y ) and y turn out to be on the same side of S n
n U in U, say in U + . Then there would exist a point q E U + which could be
joined both to y and to g 2 ( y ) with geodesics taking values in U + (and
therefore minimal). The point y is regular by construction and the two
geodesics both realize the distance of the point q from the orbit G(y).
The point q would then necessarily be a strong focal point (since U con-
tains no conjugate points) which is absurd.

Theorem 2 is thus proved.

We call g the orthogonal reflection of E around S . We conclude by
giving some immediate properties of walls.

PROPOSITION 5.5. The set of singuLar submanifotds is discrete.

PROOF. Suppose there exists a sequence of singular with
an accumulation point p ( p is necessarily singular). For sufficiently large
n , pn belongs to a Gp-slice and thus Gpn c Gp , that is All these

points must then belong to the same singular submanifold.

being the union of the walls, the set E reg is naturally decom-
posed in the components of Each of these components is called
Weyl chamber of the section and the Weyl group W~ acts freely as a per-
mutation group of the Weyl chambers.
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