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Decay of Solutions to the Mixed Problem
for the Linearized Boltzmann Equation

with a Potential Term

in a Polyhedral Bounded Domain.

MINORU TABATA(*) - NOBUOKI ESHIMA(**)

ABSTRACT - We study decay of solutions to the mixed problem with the perfectly
reflective boundary condition for the linearized Boltzmann equation with an
external-force potential in a polyhedral bounded domain, i.e., in a bounded do-
main whose boundary is a 2-dimensional piecewise linear manifold. We do not
assume that the domain is convex. The purpose of this paper is to prove that
the solutions of the mixed problem decay exponentially in time.

1. Introduction.

The nonlinear Boltzmann equation describes the evolution of the

density of rarefied gas. If an external conservative force acts on the gas
particles, then the equation has the form,

where ~( ~ , ~ ) denotes the nonlinear collision operator (see [5], pp. 30-31),
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and is a differential operator defined as follows:

We denote the time variable, the space variable, and the velocity variable
by t , x , and ~ respectively. We denote a potential of the
conservative external force. We denote by f = f ( t , x , ~) the unknown
function which represents the density of gas particles that have a veloc-
ity ~ e at time t 9 0 and at a point x E S~ , where S~ is a domain of 1E~3
(i.e., a connected open subset of IE~3). We assume that the gas particles
are confined in S~ by being reflected perfectly from the boundary 

This paper uses the assumption of cut-off hard potentials in the sense
of Grad (see [5-6]). We linearize (NBE) around the equilibrium state,
M = exp ( - w(r) - [ 1 1’/2), under this assumption. Substituting f =
= M + M1/2U in (NBE), and dropping the nonlinear term, we obtain the
Linearized BoLtzmann equation with a potentiaL term,

where v = v(~) is a multiplication operator, and K is an integral operator.
These operators act only on the velocity variable ~, and have the follow-
ing properties (see [5-6] for the proof):

LEMMA 1.1. (i) There exist positive constants = 0, 1, such that

v o ~ v( ~) ~ v 1 ( 1 + ~ ~ ~ ) for 

(ii) K is a self-adjoint compact operator in L2(R!).
(iii) ( - v + K) is a nonpositive operator in L2(R!) whose null space

is spanned by ~jexp( -1~12/4), j = 1,2,3, exp(- 1 ~12 /4), and

|E|2 exp ( - |E|2/4), where we denote the j-th component of E by Ej, j =

We write (MP) as the mixed problem for (LBE) with the perfectly re-
flective boundary condition. The purpose of the present paper is to study
decay of solutions to (MP). If we try to study this subject, then we easily
find the need to investigate the structure of the spectrum of the operator
B . However, inspecting the form of B , we can say that the structure of
the spectrum of B is greatly influenced by the operator ~l. Moreover,
prolonging solutions of the following system of ordinary differential

equations by making use of the law of perfect reflection on the boundary
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8Q (see § 4 for the details), we can construct the characteristic curves
of A:

Therefore we can conclude that the structure of the spectrum of B must
be closely connected to the behavior of the prolonged solutions of

(SODE). For this reason, in order to achieve the purpose of the present
paper, we need to fully investigate the behavior of the prolonged sol-
utions of (SODE).

The behavior of the prolonged solutions of (SODE) is complicated in
general, and it is difficult to inspect the behavior of the prolonged sol-
utions of (SODE) globally in time. However, it must be noted that the
complexity of the behavior of the prolonged solutions of (SODE) de-
pends largely on geometry of the boundary surface For example, as
the geometry of 8Q becomes more complex, the solutions of (SODE) are
prolonged by being reflected from 8Q in a more complicated manner.
Hence the behavior of the prolonged solutions is also more complex.
Conversely, as the geometry of 8Q becomes simpler, the solutions of
(SODE) are prolonged in a simpler manner. Hence the behavior of the
prolonged solutions of (SODE) is also simplified. Taking these facts into
account, and recognizing the difficulty caused by the complexity of the
behavior of the prolonged solutions of (SODE), we find the need to sim-
plify the behavior of the prolonged solutions of (SODE) by imposing
some assumption on geometry of 

For this reason, in this paper, we will assume that S~ is a polyhedral
bounded domain, i.e., that Q is a bounded domain whose boundary is a 2-
dimensional piecewise linear manifold. By virtue of this assumption, we
can simplify the behavior of the prolonged solutions. Hence we can fully
investigate the behavior of the prolonged solutions of (SODE).

Under the spatial periodicity condition, in [12] (in [16], respectively)
we investigate decay of solutions of (LBE) (the structure of the spec-
trum of the linear transport operator with a potential term, respect-
ively). Hence, it seems to be promising to attempt to apply the methods
in [12] and [16] also to the problem treated in this paper. However, if we
do so, then we immediately encounter the difficulty which is caused not
only by the fact that we do not impose the spatial periodicity condition in
the present paper but also by the fact that we do not assume that the do-
main Q is convex. In particular, the second fact raises the difficulty such
that there is a possibility that some characteristic curves of A tend to fol-
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low For these reasons, we cannot apply the methods in [12], § 7-8
and those in [16], § 6 to our problem (we will discuss this difficulty in Re-
marks 7.2-3).
We will overcome these difficulties by improving the results of [16],

§ 6 greatly. We will make that great improvement, by proving inequali-
ties similar to those in [16], Lemma 6.1 also for such erratic characteris-
tic curves as those which tend to follow the boundary In proving
those inequalities, we cannot apply the methods in [16], § 6 at all; we
have to perform calculations (on Jacobian matrices) which are more com-
plicated than and quite different from those done in [16], § 6. In these
calculations, we make use of the assumption that S~ is a polyhedral
bounded domain. The main result of this paper is the Main Theorem
demonstrated in § 3, which is as follows: the solutions to (MP) decay ex-
ponentially in time.

This paper has 7 sections in addition to the present section. § 2

presents preliminaries. In § 3, we will prove the Main Theorem, by mak-
ing use of Lemmas 3.1-2. In particular, Lemma 3.2 is a key lemma which
plays an essential role in this proof. In § 4, by making use of the perfectly
reflective boundary condition, we prolong the solutions of (SODE) glob-
ally in time, in the same way as [14], § 5. In § 5 we prove Lemma 3.1. In
§ 6 we seek estimates which imply Lemma 3.2. In § 7, by making use of
the assumption that Q is a polyhedral bounded domain, we greatly im-
prove the inequalities of [16], Lemma 6.1, as mentioned above. In § 8,
combining the result of § 7 and the methods in [16], § 7-8, we will prove
the estimates sought in § 6.

REMARK 1.2. (i) The subject of the present paper is closely re-
lated to the theory of dynamical systems. Cf. [12], § 1, [13], pp. 742-746
and pp. 754-756, and [16], § 1.

(ii) We can simplify the behavior of the solutions of (SODE), also
by assuming that the external potential is spherically symmetric. See [13].

(iii) For studies already made on (NBE) and (LBE), see, e.g.,
[1-4], [7-11], and [17].

Acknowledgements. We would like to express our gratitude to Pro-
fessors S. Ukai and Y. Shizuta for their encouragement. This work was
supported by the Grant-in-aid for Scientific Research 07640209, Ministry
of Education of Japan.
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2. Preliminaries.

(1). Assumption. As already mentioned in § 1, we impose the follow-
ing assumption on Q:

ASSUMPTION Q. (i) S~ is a bounded connected open subset of 

(ii) 8Q is a 2-dimensional piecewise linear manifold.

We easily see that if S~ is a bounded connected open subset of R~
whose boundary 8Q is homeomorphic to a torus or to a sphere and if aS~
is represented as the union of finite triangles, then S~ satisfies Assump-
tion S~ .

From Assumption Q we easily see that we can regard 8Q as a polyhe-
dron. We call an edge of this polyhedron an edge of the 2-dimensional
piecewise linear manifold 3Q. We is contained in an

edge of by By n = n (x ) we denote the outer unit normal of
8Q at where F(8Q) 
We impose the following assumption on q5 = Ø(x):

ASSUMPTION ~. (i) 0 = Ø(x) is a real-valued function defined in Q,
and have continuous partial derivatives of order up to and including 2.

(ii) I  +00, i , j =1, 2 , 3 , where we denote
x E Q

by xi the t-th component of x , i =1, 2 , 3 , Le., x= X2, X3)-
for each ;

REMARK 2.1. (i) From Assumption 0, (i-ii), we see that there exists
lim VØ(Y) for each Hence, we can make Assump-

yES2

tion q5, (ill).

(ii) From Assumption 0, (i-ii) and Assumption ,S~ we easily see
that 0 = is uniformly bounded in S~ . Hence, for simplicity, we will
assume that q5 = O(x) is positive-valued; there is no loss of generality.

(iii) We will make use of Assumption 0, (iii), only to prove (7.20).
In Remark 7.6, we will discuss a role played by Assumption 0, (iii).

(iv) From Assumption 0, (i), we see that if X E ,SZ and H E R3, then
the Cauchy problem for (SODE) with the initial data (x, ~)( 0 ) = (X, ~ )
has a unique solution, which can be prolonged until x = x( t ) collides with

Moreover, it follows from Assumption Q, (ii), and Assumption q5,(i-
ii), that even  0, and He R3, then the Cauchy prob-
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lem has a unique solution, which also can be prolonged until x = x(t) col-
lides with In § 4, by making use of the perfectly reflective boundary
condition, we will prolong these solutions globally in time.

(v) In (ii) and (iv) of the present remark, we make use of Assump-
tion S~ , (ii). However, Assumption S~ , (ii) does not play an essential role
there. In fact, in (ii) and (iv) we have only to assume that 8Q is piecewise
sufficiently smooth. However, in § 7, Assumption S~ , (ii), will play an es-
sential role.

(2). Function spaces. By ~ (C(X, ~, respectively) we denote
the set of all bounded (compact, respectively) linear operators from a Ba-
nach space X to a Banach space Y. For simplicity, we write B(X) and
C(X) as B(X, X) and C(X, X) respectively. By Ea, a 9 0, we denote a
Hilbert space of complex-valued functions of (x, ~) x with the fol-

lowing inner product (recall Remark 2.1,(ii)):

Define as the norm of operators of
Write , respectively for simplicity.

(3). The dorrzains of operators. We denote the domain of an operator
L by D(L). Let us define the domain of ~1 (see (1.1) for A) as follows:

= u(x, ~) E Ea ; and u = u(x , ~) satisfies the bound-
ary condition,

for a.e. (X, ~ ) E F+ ~, where we denote by y ± the trace operators along
the characteristic curves of ll onto

We similarly define the domain of the operator,

as follows: , and u = ~) satisfies
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(PRBC) for a.e. (X, ~ ) E F+ ~. Applying Remark 2.1, (ii), we deduce
that

in the same way as [12], Lemma 2.1, (iv). Hence, noting that Ea+1CEa
and that B = A + K, we can define D(B) = D(A) (see (1.2)).

REMARK 2.2. (i) The boundary condition (PRBC) is the perfectly
reflective boundary condition. If u = u(x, ~) or if u = u(x, ~) E
E D(A), then u = u(x, ~) is absolutely continuous along the characteristic
curves of ~l. See [15], p. 33.

(ii) By Q(R!) we denote the set of all the one-rank operators of the
form, (ku ( ~ , ~ ) ) ( x , ~ ) _ (u( x , ~ .), f ( ~ ) ) g( ~ ), where the brackets (., .) de-
note the inner product in L2(R!). f = f ( ~ ) and g = g(~) are infinitely par-
tially differentiable functions which have compact supports.
Making use of Lemma 1.1, (ii), and performing calculations similar to,
but easier than, those in [16, Lemma 2.2], we can deduce that the opera-
tor K can be approximated in B(Eo) with a finite sum of operators of
Q(R!).

(4). The purely irrzaginary point spectrum of B. Performing calcula-
tions similar to those in [14], Theorem 4.1, (i-ii) and [15], Theorem 4.1, (i-
ii), we can obtain the purely imaginary point spectrum of B . Let 1 be a
straight line c 1E~3 . From Assumption S~ , we see that 8Q is represented as
the union of finite triangles. Making use of this result, we see that if E &#x3E;

&#x3E; 0 is sufficiently small, then the E-degree rotation upon 1 cannot map Q
into itself. Therefore Q has no axis of rotation, whereas if the 0-degree
rotation upon a line maps Q into itself for each 0 &#x3E; 0, then we say that
the line is an axis of rotation of Q. Making use of this result, and recall-
ing [14], (3.9) and [15], pp. 33-34, we can greatly simplify the calculations
performed in [14], Theorem 4.1, (i-ii) and [15], Theorem 4.1, (i-ii), and we
can obtain the following lemma (see (2.1) for E(x, ~)):

LEMMA 2.3. The intersection of E C ; 0) and the point
spectrum of B is equal The null space of B is spanned by
e-E(x,;)/2 and E(x, ~) e-E~x~ ~»2 .
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We denote by P the projection operator (in Eo) upon the null space of
B . It follows from Remark 2.1, (ii), and Lemma 2.3 that

3. Main Theorem.

Write (MP) as the mixed problem for (LBE) with the boundary con-
dition (PRBC) and with the initial data,

where we denote by Ea, 1. the set of all functions of Ea which are perpen-
dicular (in Eo ) to the null space of B . In what follows throughout the pa-
per, we denote some positive constant by c, and we use the letter c as a
generic constant replacing any other constants (such as c 3 or c 1~2 ) by c.
Hence they are not the same at each occurrence. The following theorem
is the main result of this paper:

MAIN THEOREM. For each a ~ 0, the mixed problem (MP) has a
unique solution + ~ ); Ea ) which satisfies the follow-
ing (3.1-2):

for each where Cg o is a positive constant independent of t and uo .

In order to prove the Main Theorem we will apply the following lem-
ma, which deals with the semigroup generated by A (see (2.3)) and with
the resolvent operator of A:

LEMMA 3.1. (i) For any a 9 0, the operator A generates a strongly
continuous semigroup in Ea , which satisfies the following inequality:

where (see Lemma 1.1, (i) for vo ).
(ii) Let a, cS.1.2 and C be constants such that a 9 0, c3.1.1 &#x3E; cS.1.2 &#x3E; 0,

and C &#x3E; 0 . If , f = f ( t ) is a continuous function from [ o , + oo )t to Ea such
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that (see (2.4) for K)

then

(ill) y , (5eR. 
If ~8 * y + c3.1.1 &#x3E; 0 and f E Eo , then,

This lemma plays the same role as [12], Lemma 3.1 and Lemma 3.3.
In addition to this lemma, in order to prove the Main Theorem we need
the following lemma, which plays the same role as [16], Lemma 3.2:

LEMMA 3.2. L = * (I~ - P)(¡.,t - A) - 1 is an analytic operator-
valued function of !1- E ~ _ 1,U e C ; Reu &#x3E; - cS.1.1}, and satisfies the fol-
lowing (i-ii), (see (2.4-5) for K and P): (i) 1(a4 (~c ) E for each !1- E D,

PROOF OF THE MAIN THEOREM. It follows from Lemma 3.1, (i), that
(,u - A ) -1 is an analytic operator-valued function of / e D . Hence we can
set the resolvent equation,

where /.i E D and B = B - P . We consider the operator B in place of B , in
order to remove the null space of B (cf. [12], p. 1833). By (2.4-5) and
Lemma 3.1, (i), we easily see that B generates a strongly continuous
semigroup in Ea , which is represented in terms of the inverse Laplace
transformation of (3.3). Applying Lemmas 3.1-2 to that inverse Laplace
transformation in the same way as [12], pp. 1833-1834, we can prove
(3.2). By Lemma 1.1, (iii), and Lemma 2.3, we can obtain (3.1).

REMARK 3.3. (i) In [12], pp. 1833-1834 we do not need to directly
apply the spatial periodicity condition. Hence, without the aid of that re-
strictive condition, we can apply Lemmas 3.1-2 in the proof above.
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(ii) In [12] and [16], we obtain [12], Lemma 3.1 and Lemma 3.3 and
[16], Lemma 3.2 under the spatial periodicity condition, but in the

present paper we prove Lemmas 3.1-2 by Assumption Q and Assump-
tion 95. Lemma 3.1 will be proved in § 5. The proof of Lemma 3.2 is en-
tirely different from and more complicated than that of [16], Lemma 3.2.
For the same reason as [16], § 5, we consider the 4-th power 0(,u) in
Lemma 3.2.

(iii) If Lemmas 3.1-2 are proved, then we can complete the proof of
the Main Theorem. We can decompose lI~(,u ) as follows: L(/~) +

+ Lp(/1-), where = X(,u - A ) -1 and Lp(/1-) _ - P(,u - A) -1. We can
easily derive Lemma 3.2 from the following (3.4-7):

Making use of (2.5) and Lemma 2.3, and performing calculations similar
to, but much easier than, those in proving (3.4-5), we can obtain (3.6-7).
Hence we will prove (3.4-5) only. (3.4-5) will be proved in § 6-8.

4. Prolonged solutions of (SODE).

By (CP) we denote the Cauchy problem for (SODE) with the initial
data,

See (2.2) for F_ . Recall Remark 2.1,(iv). We denote by (x, ~) _
= (x(t), ~(t) ) the solution to (CP). In the same way as [14], pp. 1284-1285,
we will prolong the solution of (CP) globally in t E R by the law of perfect
reflection,

where x(s ± 0) Hereafter, we denote the solution of (CP) thus
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prolonged in t E R by

We can decompose 8Q x into four disjoint subsets as follows:
8Q x R3 = E UFo U F + U F -, where E == E(aQ) x R3 andFo == ~(x, ~) E

x R3; n(r) . 1 = 0 ~. If (x, ~) = (x(t, X, E), ~(t, X, E) ) goes into
E U Fo , or if x = x( t , X, E) collides with an infinite number of
times in a finite time interval, then we cannot prolong the solution glob-
ally in time by the method in [14], pp. 1284-1285. Conversely, if (x, ~) =
_ (x( t , X, ~ ), ~(t, X, ~ ) ) does not go into E U Fo , and if x = x( t , X, E)
does not collide with an infinite number of times in a finite time

interval, then we can prolong the solution globally in time by the method
in [14], pp. 1284-1285. By virtue of the following lemma, we can prolong
the solution of (CP) globally in time for almost all (X, ~ ) E S~ x R :

LEMMA 4.1. Dk , k = 0, ... , 3 , are null sets in Q x R3, where Do (DI,
~ ) X II~3 ; (x( t , X , ~ ), ~(t, X , ~ ) ) E Fo (e E, re-

spectively) for some D2 (D3 , respectively) - ~ (X , 
there exists a strictly-monotone-increasing, positive-valued (strictly-
monotone-decreasing, negative-valued, respectively) bounded sequence

such that for each j E N and
such that for each 
E (t °° (X, ~ ), 0 ] respectively), where t °° (X, ~ ) _
- lim tj(X, E)).

j - +oo

PROOF. We can prove the present lemma when k = 0 , 2 , 3, in exactly
the same way as [14], Lemma 5.1. In [14] we assume that 8Q is a C 2-class
surface (see [14], Assumption 2.1,(ii)), and hence 8Q x does not have
such a singular subset as E in [14]. However, making use of the fact that
E is a null set in 8Q x IE~3 , and performing calculations similar to, but
easier than, those in proving the present lemma with k = 0 (see [14],
pp. 1289-1290), we can deduce that Dl is a null set.

Let (X, ~ ) E S~ X IE~3 . By we denote the j-th component 
respectively, j = 1, 2 , 3 , i.e., X = (Zi, X2 , X3 ), ’5’= ( ~ 1, ;72, ~ 3 ). We de-
note the ( i , j ) component of the Jacobian matrix,

by i j=1 6 ie if then

If : and , then
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The following lemma deals with this Jacobian matrix,
and will be employed in § 7-8:

LEMMA 4.2. (i) Let be such that

where for each

then

where c4.2 is a positive constant dependent only on

1; we denote by ) j a norm of matrices de-

fined as follows:

(ii) If t satisfies (4.5), then

where I denotes the 6 x 6 identity matrix.

(iii) Let T &#x3E; 0 be a constant. Let (X, ~ ) x satisfy the fol-
lowing (4.6):

(4.6) ( x , ~ ) _ (x( - s , X , ~ ), ~( - s , X , ~ ) ) does not go into E U Fo
when s E [ o , T], and x = x( - s , X , ~ ) does not collide with 
an infinite number of times when s E [ o, T].

If t E [0, T] satisfies the following (4.7):

then

where we denote the determinant of a square matrix M by det (M).
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PROOF. If t satisfies (4.5), then the particle x = x( - t, X, ~ ) does not
collide with Hence we do not need to take the boundary condition
into account. We see that ( x , ~ ) = (x( - t , X , ~ ), ~( - t , X , ~ ) ) satisfies
the Cauchy problem for the following system of ordinary differential
equations with the initial condition (4.1) (cf. (SODE)):

Differentiating both sides of (4.8) with respect to (X, ,~ ), we obtain an or-
dinary differential equation satisfied by J = J( t , X , ~ ). We write (4.9) as
that equation. Applying Assumption O ,(i-ii), to (4.9), we can obtain (i-ii).
Performing calculations similar to, but much easier than, those in Proof
of Lemma 7.1, we can prove (iii) (hence we omit the details). (iv) can be

proved in the same way as [16], (7.1).

REMARK 4.3. (i) If we do not assume (4.6), then there is a possibili-
ty that we cannot define ( x , ~ ) = (x( - t , X , ~ ), ~( - t , X, ~ ) ) for some
t E [ o , T]. (4.8-9) do not hold at the time when x = x( - t , X , ~ ) collides
with Hence we need to impose (4.7).

(ii) We easily see that {(X, ~ ) E Q x 1E~.3 ; (X , ~ ) does not satisfy
(4.6)} is a null set and [ o , T]; x( - t , X, E) E 3Q I is a finite set
for a.e. (X, ~ ) E Q x (see Lemma 4.1). Therefore Lemma 4.2, (iii), (iv)
can play the same roles as [16], (2.1), (7.1), respectively.

5. The operator A.

PROOF OF LEMMA 3.1. We easily see that A (see (2.3)) generates a
strongly continuous semigroup in Ea for each a ? 0 . The semigroup e ~
has the form,

where Making

use of Lemma 1.1, (i), and Remark 2.1, (ii), we deduce that

Applying (5.2), (2.4), Lemma 4.2, (iii), and the following conservation law
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of energy (see (2.1)) to (5.1), we can obtain Lemma 3.1:

Let / e D. By restricting the domain of integration of the Laplace
transformation of (5.1) within a Lebesgue measurable set Me [ o, + 00 ),
we define the following operator (cf. [16], (4.3-4)):

where R(,u , t , X, E) = e(t, X , ~ ) exp ( -,ut ). For this operator we can ob-
tain the following lemma in the same way as [16], Lemma 4.1 (cf. [16],
Remark 4.2):

LEMMA 5.1. If and M c [ 0 , +oo), then

REMARK 5.2. In Proofs of Lemma 3.1 and Lemma 5.1, we do not
need the spatial periodicity condition at all. Recall Remark 3.3, (i-ii).

6. Discussion on (3.4-5).

We take an approach similar to that in [16], § 5. We will seek esti-
mates which imply (3.4-5). Consider operators of the following form:

where u E D, 1  T  + oo, and kj E Q(R3E), j = 1,..., 4. See Re-

mark 2.2,(ii) for Q(lE~~). See Lemma 3.2 for D. By we denote the

product Am Am - 1 ...A2 Al for the operators Aj, j = 1, ..., m . Making use
of Lemma 5.1 and Remark 2.2, (ii), we can derive (3.4-5) from the follow-
ing (6.2-3):

for each T E [ 1, + oo )

Hence, we have only to prove (6.2-3), which will be proved in § 8.



147

We write ( x4 , ~ 4 ) E S~ x as the variable of T ) u , i.e., we write
~(,u , T ) u = (G(,u, T) u( ~ , ~ ) )(x4 , ~ 4 ). In the same way as [16], (5.7-9), we
can extract the integration kernel of ~(,u , T ) as follows:

where dt --- dt1 ... dt4 , dq * di7l ... d?7 4 , and

We define

Recall (4.3). By we denote the integration kernel of i

. R &#x3E; 0 is a constant so large that sup
be contained in

7. E stimates for the Rank of J = J(t, X , ~ ).

For the same reason as [16], Remark 5.1, (i), we need to fully investi-
gate the Jacobian matrix J = J( t , X , H) (see (4.4)) in order to prove (6.2-
3). For this purpose we will prove Lemma 7.1 in the present section.
Lemma 7.1 is similar to [16], Lemma 6.1. However, the proof of Lem-
ma 7.1 is entirely different from and more complicated than [16], Proof of
Lemma 6.1.

We denote the i-th row vectors of J = J( t , X , ~ ) by Ji = Ji ( t , X, E),
i = 1, ... , 6, i.e., we define Ji = Ji ( t , X , ..., mi6), i = 1, ... , 6.

See (4.4). Let bj, j = 1, ... , N, be linearly independent vectors in 
We orthogonalize these vectors, i.e., we define 

=1, ... , N, as follows (we do not normalize them):
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LEMMA 7.1. Let be constants. If t E [ o , T ] and

satisfy (4.6-7), then

REMARK 7.2. (i) See Lemma 4.2, (i) for c4.2. We impose (4.6-7) for
the same reason as Remark 4.3, (i). This lemma can play the same role as
[16], Lemma 6.1 for the same reason as Remark 4.3, (ii).
(ii) As already mentioned in § 1, we do not assume that S~ is convex.

Hence a characteristic curve of ~l , ( x , ~ ) _ (x( - t , X , ~ ), ~( - t , X, ~ ) ) ,
t E R, can behave very erratically. For example, there is a possibility that
the trajectory of x = x( - t , X, ~ ) tends to follow the boundary surface

Hence we have to prove that even if a characteristic curve of ~l be-
haves thus erratically, then the inequalities of Lemma 7.1 still hold.

PROOF OF LEMMA 7.1. In what follows throughout the proof, we as-
sume that (X, ~ ) satisfies (4.6). We easily see that only the following two
cases exist:

(I) x = x( - t , X , ~ ) does not collide with 8Q when t E [0, T].

(II) x = x( - t , X , ~ ) collides only with a finite number of times
when ~E[0, T], i.e., there exists a strictly-monotone-increasing, positi-
ve-valued, finite ~ ) ~n =1, ...,~c [ o , T ] which depends on
(X, ~ ) and satisfies the following (1-2): (1) If t E [ o, T] B
B~tn(X ~ ~= )~n=1, ..., m~ then (2) x( - tn(X, E), X, E) E
e F(8Q) for n =1, ... , m , where m is a positive integer dependent on
(X, E).

REMARK 7.3. (i) If (I) holds, then we can obtain the present lemma
in exactly the same way as [16], Proof of Lemma 6.1. Hence, hereafter we
assume that (II) holds.

(ii) In Lemma 4.1 we have already proved 
E D( r); x = x( - t , X , ~ ) collides with an infinite number of times in
a finite time interval} is a null set. However, the number m of (II) de-
pends on (X, ~ ), i.e., there is a possibility that this number tends to in-
finity as (X, ~ ) moves. Hence we need to prove that the inequalities of
Lemma 7.1 hold uniformly for m (cf. Remark 7.2,(ii)). Hence we have to
carefully inspect the change of J = J( t , X , ~ ) before and after the par-
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ticle x = x( - t , X , ~ ) collides with i.e., the difference between
J(tn(X, E) + 0, X, E) and J(tn(X, E) - 0, X, ~-7), n = 1, ..., m.

(iii) Considering the definition of (4.3) (see [14], p.1285), we easily
see that if t and s satisfy (4.7), then

Therefore we can regard ( x , ~ ) = (x( - t , X , ~ ), ~( - t , X , ~ ) ) as func-
tion of r = t - s and (x( - s , X , ~ ), ~( - s , X , ~ ) ) . Hence we can define
the Jacobian matrix (cf. (4.4)),

in the equality , I
Then we have

where ~ ) _ 
t I T tn(X, E) 

J( t , s , X, E). We have only to in-

vestigate ~’), ~ = 1, 1 ... , m . We will prove that these matrices are

orthogonal.

We will first inspect E) for simplicity. We let t I E) and
s T t 1 (X, ~ ) in (7.2). Hence we assume that t and s satisfy

For simplicity, we write (X, .9 as (x( - s , X, E), g( - s , X, ~ ) ) , and we
write tj and ti as tj(X, E) and tj(K,?) respectively, j = 1, 2 . We easily
see that t i - s = ti, j = 1, 2 . Hence, it follows from (7.4) that

where z = t - s. Moreover we deduce that if t ! t 1 and then

converges to

where H) is a characteristic curve of A which connects (X, H)
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Substituting ( in (7.2), we obtain

From (7.5-6) we see that 
. 

lim 
A 1 

is equivalent to

deduce that

We can obtain the right hand side of (7.8) as follows:

LEMMA 7.4. If r 10 with (7.5), and if (K, m converges to

(Xl, :21 - o ) along T1 (X, H), then J( i , X, m converges to a 6 x 6 matrix in
such a way that, for each 3-dimensional column vector y,

where we denote the 3 x 3 zero matrix by 0; n1 == n (X 1 ). See § 2 for n =
= n(x). We denote by xj, Ej, Xj, and # the j-th components X, and H
respectively, j = 1, 2 , 3.

PROOF OF LEMMA7.4 Recalling the methods employed in [14], p. 1285,
we easily see that if r satisfies (7.5), then

where (7.10.3) follows from (PRBC) immediately. In order to obtain the
limit in (7.8), we differentiate both sides of (7.10.1-2) with respect to
(X, .9, let (K, g) converge to 81-0) along 8), and let r 10
with (7.5). Trying to perform these calculations, and noting that 1:-
- t1 ! 0, we find the need to employ Lemma 4.2,(ii), with t = r - r1 and the
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need to obtain the following limits:

REMARK 7.5. (i) We easily see that x( - tl, X, ~ = X 1 and ~(-(~-0),
X, ~ ) _ ~ 1- ° . Hence, applying (4.8) and Remark 2.1,(i), we have

(ii) In order to simplify the calculations in obtaining the limits
(7.11.1-5), we will introduce a 3-dimensional rectangular coordinate

system ( xl , x2 , in such a way that the origin coincides with X,
that the x2 x3 plane (xl = 0 ) includes the face of 8Q which contains
X 1 (recall Assumption Q, (ii) ), and that n = ( 1, 0 , 0 ). That face of
8Q is represented as follows: x, = 0. Hence, it follows from X = x( -
- t1, X, H that

Differentiate both sides of (7.13) with respect to (X, ,9, and apply
lim. Noting that t’ 1 0, and applying Lemma 4.2, (ii), and (7.12.1) to
the equalities thus obtained, we can obtain (7.11.1) as follows:



152

where H1-0j denotes the j-th component

It follows from (7.10.3) that

where O(1) _ -1, and g(I) * 1 for i = 2, 3. Making use of (7.13), (7.12.1-
2), (7.14.1-2), (7.15), and Lemma 4.2, (ii), and noting that t’ 10, we can
obtain (7.11.2-3) as follows:

Performing calculations similar to those in Remark 7.5, (i), with the
aid of (4.8) and (7.15), and noting we see that (the limit
(7.11.4))= -~)~’~ and (the limit (7.11.5)) _ x=x1, i =

= 1, 2, 3. If we combine these results, (7.14.1-2),(7.16.1)-(7.19), and Lem-
ma 4.2, (ii), then we can obtain the right hand side of (7.8) in terms of the
rectangular coordinate system defined in Remark 7.5, (ii). Substituting
the following equalities, which follow immediately from the definition of
the rectangular coordinate system, in the result thus obtained, we can
obtain Lemma 7.4: n1= (1, 0, 0), n1 = (x=xl,
n1.E1-o = 31-0.

Let us continue proving Lemma 7.1. Noting that n 1. ,~ 1- o ~ o , and
applying Assumption q ,(iii) to (7.9.3), we have
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It follows from (7.9.1-2), (7.9.4), and (7.20) that U 1 (X , ~ ) is an orthogo-
nal matrix.

Performing the same calculations as above for n = 2, ... , m, we see

that ~ ), n = 2 , ... , m , are orthogonal matrices. Applying these
results to (7.3), we have

See Lemma 4.2, (i) Combining these equalities and Lemma 4.2, (i)
with (t - (X, E), t+ (X, ~ ) ) = (t n (X , ~ ), t n + 1 (X, ~ ) ) successively for n =
= 1, ... , m, we have (cf. [16], (6.1))

Making use of this inequality and Lemma 4.2, (iii), we can obtain Lem-
ma 7.1 in the same way as [16], Lemma 6.1.

REMARK 7.6. (i) Even if the number rrz of (II) of Proof of Lemma 7.1
tends to infinity, then (7.21-22) still hold, because =

=1, ... , m , are orthogonal.
(ii) Assume that 8Q is only piecewise sufficiently smooth, in place

of Assumption Q,(it). If we perform calculations similar to, but more
complicated than, those done above, we can obtain the limit in (7.8), also
under such a relaxed assumption. However, the limit comes to contain
the second fundamental quantities of 8Q in a complicated manner, and
moreover, the second fundamental quantities of such a surface are not
always equal to 0; the limit in (7.8) becomes very complex. Therefore we
cannot obtain a simple result such as Lemma 7.4. If we impose Assump-
tion Q ,(it), then we can regard 8Q as a plane in the neighborhood of X 1.
Hence all the second fundamental quantities are equal to 0 in the neigh-
borhood of X  . By virtue of this fact, we can greatly simplify the limit in
(7.8), as already shown in Lemma 7.4. This is the reason for imposing As-
sumption S~ , (ii).

(iii) If we do not impose Assumption 0, (iii), then it does not follow
from Lemma 7.4 that U 1 (X , ~ ) is orthogonal. Hence we cannot obtain a
result such as (7.21).

(iv) From Assumption q5, (iii) and Assumption S~ , (ii), we see that if
x is contained in an edge of then is parallel to the

edge, and that if x coincides with a vertex then
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8. Proof of (6.2-3).

We can prove (6.2-3) in the same way as in [16], § 7-8, i.e., we can
prove (6.2-3) by the following 5 steps:

(1) Combining Lemma 7.1 (recall Remark 7.2, (i)), [16], Lem-
ma 6.3, (ii), and Lemma 4.2, (iv), and performing the same calculations as
those in [16], Proof of Lemma 7.1, we can obtain the same estimates for

t4) as [16], Lemma 7.1 (recall (6.6)).

(2) Applying Lemma 7.1, [16], Lemma 6.3, (ii), Lemma 4.2, (iv), and
the estimates obtained in (1), and performing the same calculations as
those in [16], Proof of Lemma 7.2, we can obtain the same estimates for
a( x2 ) /a( ~ 4 , t4 , ~ 3 , as [16], Lemma 7.2.

(3) Applying Lemma 7.1, [16], Lemma 6.3, (ii), Lemma 4.2, (iv), and
the estimates obtained in (2), we can obtain the same estimates for
a( xl ) /a( ~ 4 , t4 , 17 3, t3 , ~I 2 , t2 ) as [16], Lemma 7.3, in the same way as [16],
Proof of Lemma 7.3.

(4) By Lemma 7.1, [16], Lemma 6.3, (ii), Lemma 4.2, (iv), and the
estimates obtained in (3), we can obtain the same estimates for

3(~ ~o)/3(~ ~ r¡ 3, t3 , r¡ 2, t2 , ~I 1 ) as [16], Lemma 7.4, in the same way
as [16], Proof of Lemma 7.4.

(5) Making use of (5.2-3), we can prove the same estimates for (6.5)
as [16], (5.10-11). Combining these estimates and the estimates obtained
in (4), we can prove (6.2-3) in exactly the same way as [16], § 8.

In [16], § 7-8 and Proof of Lemma 6.3, (ii), we do not need to apply the
spatial periodicity condition. Hence we do not need that condition in the
steps above.
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