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On Some Model Theoretic Problems

Concerning Certain Extensions of Abelian Groups
by Groups of Finite Exponent.

CARLO TOFFALORI (*)

1. Introduction.

For every group G, let denote the class of groups admitting a
normal abelian subgroup A such that the quotient ,S/A is elementarily
equivalent to G , S/A = G . For G abelian, let Xe (G) denote the class of
abelian groups in ~,( G ).

The aim of this note is to investigate and, possibly, Xe (G) for
some given G . Of course, one may wonder which is the interest of this
analysis. As we will see just a few lines below, the originating question
was the first order axiomatizability of in the language for groups.
But it is worth emphasizing that (and so Xab(G)) do admit some
natural algebraic characterization, not only because the elementary
equivalence between two given structures can be generally translated in
algebraic terms by using ultraproducts (and the Keisler-Shelah Theo-
rem) or, for finite languages, partial isomorphisms (and the Fraisse The-
orem), but also because we will see later that, at least for some suitable
G , ~,( G ) can be introduced in a genuine group theoretic way.

The starting line of the matter was the case «G finite». Here the ax-
iomatizability problem seems solved in a positive way [02]: for, in this
case, X( G) is just the class of abelian-by-G groups, namely the class of
the groups ,S admitting a normal abelian subgroup A such that S/A is iso-
morphic to G (« = G» means « = G» under the finiteness assumption);
and the latter class is elementary, and even finitely axiomatizable. No-
tice that, for G finite, the analysis benefits by (at least) two significant

(*) Indirizzo dell’A.: Dipartimento di Matematica e Fisica, Universita di Ca-
merino, Via Madonna delle Carceri, 62032 Camerino (Italy).
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advantages. The former is that any group in X( G) is stable and, accord-
ingly, enjoys some useful algebraic properties, like chain conditions, de-
finability of centralizers, and so on. The latter advantage is related to the
former one: for, A has a natural structure of Z[ G ]-module and most
model theory (including stability) of S -as a group- reduces to A -as a
module-.

Now assume G infinite. As we will see below, both the previous ad-
vantages fail. Nevertheless some partial results were obtained in [MaT]
and [T]. In particular

(a) if G is abelian of bounded exponent, then Xe (G) is elementary
(but needs infinitely many sentences to be axiomatized in the first order
language of groups);

(b) if G is abelian of prime exponent, then ~,( G ) is elementary [T]
(by the way, there is a slight inaccuracy in the final Lemma in [T]; see
Lemma 3.2 below for a sharp statement and proof);

(c) if G is abelian of unbounded exponent, then, in most cases,
Xab(G) and, consequently, are not elementary.

With respect to first order axiomatizability, let us also recall that, for
every group G , -and for G abelian- are always closed under
ultraproducts; so, in order to test elementarity, we have to check that
~(G), or are closed under hence that, if S E X(G), then every
model of the theory of S is in K(G), too. Moreover, by a L6wenheim-
Skolem argument, we can assume S countable. In fact, given 8 E X( G)
and a corresponding normal abelian subgroup A with 81A = G , a count-
able model (So, Ao) of the theory of (S, A ) still satisfies and

S0/A0 = G.
Another useful remark is that, owing to the Oger result quoted be-

fore [02], the groups S which are not abelian-by-finite are an elementary
class (just list finite groups G and state that S is not abelian-by-G for
every G).

The main purpose of this note is to deal with when G is infinite,
of finite exponent (and possibly nonabelian). We aim to find some signifi-
cant and direct group theoretic characterizations, and to discuss first or-
der axiomatizability. More precisely, our project is to consider G =
= C(~)~~~~ EÐ H where H is a finite group and the order of H is prime to p
(hereafter, for every positive integer m, C(m) is the multiplicative cyclic
group of order m); notice that this extends the case quoted in (b) and in-
tersects (c).
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Let us summarize here the plan of the paper. In § 2, we give some al-
gebraic characterizations of the groups S E X( G), featuring the derived
subgroups S’ and the subgroup Sr generated by the r-th powers in S (r a
positive integer); by the way, recall that both S ’ and S r are fully invari-
ant subgroups of ,S . Consequently in § 3 we discuss the definability of S ’
and this overlaps the stability question for groups in ~,( G ); we will
see that, even in the easiest case H = 1, there do exist unstable groups in
~,( G ). In the final sections, we study elementarity in the «simplest» non-
trivial case for H, namely when H is a simple group. In particular, in § 4,
we deal with first order axiomatizability when H is simple and non-
abelian. In § 5 we obtain a full positive result when H is simple abelian
and is not abelian; finally we discuss the case when both H and

are abelian (and the order of H is squarefree); we give a more
pregnant group theoretic characterization and we prove first order ax-
iomatizability at least for nil-2 groups S.

We refer to [H] for model theory and to [R] for group theory. L is the
first order language for groups. Among groups, ~ will denote the rela-
tion «to be a subgroup», and  will mean «to be a proper subgroup». We
gratefully acknowledge helpful suggestions from Prof. Guido Zappa and
Prof. Andreas Baudisch.

2. Algebraic characterizations.

Let G = Qi H where p is a prime and H is a finite group whose
order q is prime to p . We are looking for a group theoretic characteriza-
tion of ~,( G ). Notice that H is definable in G as the subgroup of the ele-
ments whose period divides q . A (comparatively easy) algebraic defini-
tion of is obviously provided by the fact that the first order theory
of G is totally categorical: up to isomorphism, its models are just those of
the form C(~)~°‘~ ® H where a is an infinite cardinal. Accordingly, « * G»
means « = c(p ia) ® H» for some infinite a . But now we wish to propose
another algebraic characterization, which involves a sort of in-

termediate group, and which will be useful later.

THEOREM 2.1. Let G = EÐ H where p is a prime, H is a finite
group and the order q of H is prime to p . Then a group S is in ~,( G ) if and
only if ,S satisfies the following assumptions:

(i) has infinite index in S;
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(ii) S ’ S p has an abelian subgroup N such that N is normal in ,S ,
and every element s E S whose period modulo N divides p

commutes with both commutators and p-th powers modulo N.

PROOF. First assume S E ~,( G ). Then there is a normal abelian sub-
group A of S such that ,S~A = C(~)~a~ Qi H for some infinite cardinal a .
Choose bo , ... , br in ,S - A such that bo A , ... , brA generate the copy of H
in S/A with respect to some fixed presentation. Put

Since A is normal in ,S, every element in B can be expressed as ab where
a E A and b is a word on bo , ... , br . We claim that B is normal in ,S . In
fact, let a E A , b be a word on bo , ... , br ; notice that Owing
to the structure of ,S , there exist a ’ E A , a word b ’ on bo , ... , br and r z S
such that xA is in the copy of C(p)(a) in S/A (hence and

As and A is normal, hence 

consequently Notice that b ’ and x commute with each other
modulo A and b ’q E A . Accordingly xq E A. But we hence, as
p and q are coprime, we can deduce x E A , and (ab)S E B . Clearly A is a
normal subgroup of B and the quotient group B/A is isomorphic to H.
Moreover

Consequently, for every s E S,

So S P is a normal subgroup of B . Furthermore, as S/B is abelian, ,S ’ is in-
cluded in B , and hence is a (normal) subgroup of B . In particular
the index of is infinite, namely (i) holds. Now consider A n

We know
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where the latter quotient is a subgroup of B/A = H . Suppose

Then I divides ,

and this is prime to p. On the other side, every element in B has a period
dividing p modulo So we get a contradiction.

Consequently

and

Put abelian because N is a subgroup of A ; N is nor-
mal because both and A are. We have just seen that = H .

Finally let SES satisfy hence s p E A and the period of sA in ,S/A
divides p . Accordingly sA commutes with any element in B/A, in particu-
lar with any element tA in for all [ s , But

[ s , t ] hence [ s , t ] E N . So (ii) holds.
Conversely, suppose that S satisfies both (i) and (ii). Then N is a nor-

mal subgroup of ,S and the quotient S/N is an extension of = H

by SIS’S P. is abelian (because S ’ ~ ,S ’ ,S ~ ), infinite (owing to (i)),
of exponent p (because hence is an infinite elemen-

tary abelian p-group. As the order q of H is prime to p , we can apply a
Schur-Zassenhaus argument to deduce that S/N is a semidirect product
of for some infinite a. Accordingly
put

for a suitable K. In order to show that actually S/N is a direct product of
and K/N (and hence to finish the proof), we have to prove that

acts identically on But any element s has a period di-
viding p modulo N and so, by (ii), commutes modulo N with all the ele-
ments of This is just what we need to show.
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When H (hence G) is abelian, we can obtain the following, more di-
rect characterization.

COROLLARY 2.2. Let G be as in Theorem 2.1, H be abelian. Then a
group S is in X( G) if and only if S satisfies

(i) S’S P has infinite index in S ;

(ii)’ there is an abelian subgroup N of such that N contains
S’ and 

PROOF. It suffices to show that, for H (and G) abelian, (ii)’ is equiva-
lent to (ii) in Theorem 2.1. First assume (ii). Four 8 E X( G), SIA G is
abelian; hence S ’ is a subgroup of A , and consequently 
So (ii)’ holds. Conversely, assume (ii) ". As 8’ ~ N, N is normal in ,S ; the
same reason proves 81N abelian; consequently the final condition in (ii)
is trivially satisfied. 0

Let X’ (G), ~t," ( G ) respectively denote the classes of groups satisfy-
ing (i), (ii) (or (ii)’). Clearly, if both ~,’ ( G ) and ~," ( G ) are elementary,
then X( G) is. The following sections will be devoted to discussing (sepa-
ratedly or jointly) first order axiomatizability for K’(G) and K"(G). But,
before concluding this section, let us underline that, for H abelian and
S e ~t,( G ), S ’ ~ A , hence ,S ’ is abelian. In other words, any group 8 E
E X( G) is solvable of class 2.

3. Definability and stability.

The reference to S’ and Sp for G = EÐ H in Theorem 2.1 and
the necessity of translating (i), (ii) or (ii)’ in a first order way suggest to
explore if these subgroups -S ’ and SP- are definable in our setting.

It is known that a preliminary assumption ensuring some more defin-
ability is stability. By the way, recall that, for G finite, any group S E
E ~f,( G ) is stable, because most model theory of 8 reduces to A , viewed as a
Z[ G ]-module with respect to the action of S/A = G on A , and every mod-
ule is stable. So let us deal briefly with the connection with modules
when G is infinite. Let S E X( G), A be a normal abelian subgroup satisfy-
ing SIA G. Then S/A acts on A, and consequently A still inherits a
structure of module over the group ring flS/A]; but this ring depends on
,S , and may be uncountable. Of course, by replacing (S, A ) with a count-
able elementary substructure, we can assume S countable; notice that
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this does not affect, for instance, stability; moreover we have seen in § 1
that, in order to establish the first order axiomatizability of X( G), in
some sense it is sufficient to examine the countable groups in X( G); fi-
nally, when G is of the form C(~)~x°~ ® H for p prime, H finite and

= 1, then G is No-categorical and hence, for every countable S E
S/A is fixed up to isomorphism. Nevertheless, A , as a Z[ G ]-mod-

ule, is always stable, and we will see soon that S may be not. So, in any
case, the connection fails.
Now let us treat stability. We have said that, for G finite, every group in

is stable. But nothing similar is preserved for G infinite, even in
the simplest case G = C( p )~~° ~ with p prime, as the following proposition
shows.

PROPOSITION 3.1. Let G = C(p)~x°~ with p prime. Then there are
groups ,S E ~,(G) in all stability classes. Moreover, for p prime, the prob-
lem of characterizing a stability class is equivalent to characterizing the
groups S E belonging to the class.

PROOF. It is easy to provide m-stable, superstable non-m-stable,
stable unsuperstable groups in X( G): just take an cv-stable, superstable
non-a)-stable, stable unsuperstable abelian group A and form S = A 0153 G.
With respect to unstable examples in ~,( G ) for p = 2, look at 5f1° ; it is

known that this group is not stable; but it admits a normal abelian sub-
group whose quotient group is an (abelian) elementary infinite 2-
group. In order to handle the odd case and to prove the second state-
ment of our proposition, let us recall some facts from [Me]. In that paper,
fixed a prime p &#x3E; 2, it is described an effective procedure providing, for
every (infinite) structure M in a finite language, a nil-2 goup ,S(M) of ex-
ponent p such that M is first order definable in ,S(M) and M, ,S(M) are in
the same stability class. In more detail, given M, firstly one defines an
(infinite) graph T(M) satisfying some suitable assumptions; then one re-
places every node y in F(M) with a copy S., of C(p), and one forms the
free nil-2 product ,S(M) is just the quotient of with

respect to the normal subgroup generated by the commutators [say , ba ]
where y and 3 are adjacent nodes in the graph, and So
,S = ,S(M) is in ~,( G ) because S is nil-2 (hence ,S ’ is abelian) and Sis’ is an
infinite elementary abelian p-group.

Now let us discuss the definability of ,S ’ and for S e ~,( G). It is
known that, as a consequence of Zil’ber Indecomposability Theorem, the
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derived subgroup S ’ is definable when ,S is cv-stable of finite Morley
rank. But this definability result already fails for cv-stable groups of infi-
nite Morley rank, in particular for a free infinite group S in the class of
nil-2 groups of prime exponent p &#x3E; 2 [B], and we have seen that this
counterexample is in X( G) for G = C( p )~x° ~ . In any case, let us quote
some very partial results concerning the definability of S ’ ; these facts
will be useful later.

LEMMA 3.2 [T]. Let S E X( G) where G is a finite abelian group of
order n and let p be a positive integer. Then every element in can

be expressed as the product of (at most) 2 n 2 + commutators and 2

p-th powers.

PROOF. Recall that every element c in can be written as a prod-
uct of commutators and p-th powers; we can arrange these factors and to
obtain that commutators precede p-th powers. The problem is to bound
uniformly the number of commutators and p-th powers occurring in
these decompositions. For instance, one can factorize c using at most one
p-th power following suitably many commutators, but this does not bind -
a priori- the number of involved commutators. However let us fix such a
decomposition. Let A be a normal abelian subgroup of S such that 57A is
isomorphic to G. Since G is abelian, S ’ is included in A , and hence ,S ’ is
abelian. Let xl, ... , xn be a set of representatives for the cosets of A in S,
then every element in S decomposes uniquely as ax~ with a E A and 1 ~
x j x n . Now consider the commutators in the decomposition of c . Using
some basic identities and the fact that A is abelian and includes S ’ , one
sees that, for a, b in A and 1 ~ i, j ~ n,

and

Hence every element in ,S ’ can be expressed as a product of

with a E A and 1 ~ i , j ~ n , and

where 1 ~ i , j ~ n and h ranges over the integers; consequently every
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element in S ’ is a product of at most 2 n 2 commutators of the former
kind, at most commutators of the latter kind (with 0 ~ h  pn) and

powers. Actually, as S’ ’ is abelian, a unique pn-th power occurs.
Clearly any pn-th power is also a p-th power. Hence the given element c
is the product of 2 n 2 + commutators and 2 p-th powers. 0

(Notice that, in [T], this adaptation of the final Lemma still ensures
the definability of when is abelian and has finite index, and
hence still guarantees the Main Theorem, quoted as (b) in § 1).

LEMMA 3.3. Let S e ~,(G) where G = is a prime and
H is a finite group whose order q is prime to p . Let N be a normal abelian
subgroup of ,S such that and (see Theorem 2.1).
Then every element in ,S ’ is a product of (at most) q commutators modulo
N.

(For the proof, just use the fact that is finite of order q).
With respect to S r, there are some definability results in [01] and

[02], mainly concerning polyciclic-by-finite groups, hence, in particular,
finitely generated nilpotent-by-finite groups (see [01], Proposition 2.1,
and [02], Proposition 1). But notice that no group ,S E X( G) is finitely
generated when G is of the form EÐ H for some prime p.

3. The simple nonabelian case.

Throughout this section, assume G = Q3 H where p is a prime
and H is a simple nonabelian finite group of order prime to p . Our aim is
to study the elementarity of under this hypothesis. We will express
(ii) in a first order way, and then we will discuss (i). First let us underline
the following fact.

Fact 4.1. Let F be a group, Ko, Kl be normal subgroups of F such
that Ko is abelian and both F/Ko and FIK1 are isomorphic to H . Then
K0 = K1.

Otherwise Ko. K1 properly includes both Ko and Kl , so, as H is simple,
F . Accordingly

where Ko is abelian, and H is not -a contradiction-.
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THEOREM 4.2. Let G = fli H where p is a prime, H is a finite
group of order q prime to p , and H is simple and not abelian. Then X" (G)
is elementary.

PROOF. Assume S e ~," ( G ). Then there is a normal abelian subgroup
N of S such that and = H ; furthermore, for all s E S,
if then, for every choice of a and b in ,S, s commutes with both a P
and [a, b] modulo N. Notice that «H nonabelian» implies non-

abelian», and that every element in can be expressed in the form
s P c for some s e S and c E S ’ . Choose bo , ... , br in a set of representatives
of cosets of N in S such that

generate H with respect to a fixed presentation of H . Lemma
3.3 applies to our setting, and so every element in ,S ’ is a product of (at
most) q commutators modulo N. Hence we can put, for every j ~ r,

where si E S and cj is a product of q commutators. Actually, as S/N is not
abelian, N is properly included in (N, S’), and so in so the sim-

plicity of H forces (N, S’) = S ’ S ~ ~ S p ; consequently every element in
,S ’ is directly a product of q commutators modulo N, and we can suppose
that bj is the product of q commutators for r. Now we distinguish
two cases.

Case 1: for all a E N and j ~ r, a centralizes bj. This means that the
centralizer of a in Cs,sp(a) equals for all a E N, hence
Cs’sP(N) = S’SP. Consequently N is a (normal) subgroup of the center
Z(S’SP) On the other side, is not abelian, so 

and the simplicity of H implies Recall that

Cs(S’SP) is 0-definable and includes Z(S ’ ,SP). Now consider the first
order sentences in the language L of groups stating what follows:

(a 1) every product of q + 1 commutators is expressible as a prod-
uct of q commutators modulo (hence modulo Z(S’SP));

(a 2) there are bo , ... , br in S such that, for every j x r, bj is a prod-
uct of q commutators, bj E CS(S’Sp), bj centralizes any product of q com-
mutators and a p-th power modulo (hence modulo Z(S’SP)),
and finally bo , ... , br just satisfy modulo (hence Z(S’ SP» the
relations in the given presentation of H;
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( a 3 ) for every s E S such that sP is in (hence in

s centralizes the commutators and the p-th powers modulo
(so modulo Z(S’ SP». 

It is clear that a i , a 2 and a 3 are first order sentences of L . Let a de-

notes their conjunction. Also, under our assumptions, (ii) implies a . Con-
versely, let a hold in S, and put Then N is a normal

abelian subgroup of S , N ~ a 2 (and a 1 ) imply that is a

homomorphic image of H ; a 2 again ensures N ; so the simplicity
of H forces These facts and a 3 yield (ii).

Case 2: there are a E N and j ~ r such that [a, 1. Then

Notice that Cs,sp(N) is a normal subgroup of ,S’ S p (because N is) and,
using again the simplicity of H, one can conclude or

also

where Cs (N) is normal, too. As the index one can find a
natural number t  q and ao , ..., at - 1 in N such that

In fact, take ao E N and look at n ,S ’ If Cs (ao) n S ’ ,S p
for all al E N, then CS (N) D and we are done. Otherwise,
pick al E N satisfying and form 
n S ’ S p . Repeat this procedure, and notice that the machinery must stop
in at most q steps, producing t x q and a,o , ... , at - 1 E N as required. Of
course we can assume t = q . Recall that bo , ... , so, for

every j x r, there is some i  q for which In conclusion, there
are ao , ... , aq _ 1 and bo , ... , br in S such that the following conditions
hold:

(p for all j x r, there is i  q satisfying [ ai , [bj, ai ];
(P 2) for all j x r, bj is a product of q commutators;
(P3) for every a and b in S, both aP and [ a , b ] can be expressed in

the form

where w( bo , ... , br ) is in a fixed set of words on bo , ... , br (depending
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only on H) and s belongs to (hence to

Cs ( ao , ... , aq _ 1 ) n ,S ’ ,S p );
(~3 4 ) bo, ... , br just satisfy modulo CS (ao, ..., aq _ 1 ) (hence modulo

... , aq _ 1 ) n S ’ S P) the relations in the given presentation of H;
(~3 5 ) CS ( ao , ... , aq _ 1 ) is normal in S;
(B6) if s , a, b E S and sp E CS(a0, ..., aq-1) (so sP E

... , aq _ 1 ) n ,S ’ S p ), then s commutes with both a p and [ a , b ] mod-
ulo ... , aq _ 1 ) (hence modulo C s (ao, ..., aq - 1) n S ’ S P ).
Notice that ... , can be expressed as first order formulas in L.
Let

be their conjunction. So

just translates the previous condition. Now choose

satisfying Hence K1=CS(aü, is a subgroup of

normal (by and proper (owing to P 1 and P 2); moreover
S ’ is a homomorphic image of H (by B3 and B4), and so is just iso-
morphic to H because H is simple. Then we can apply Fact 4.1 to

and

recalling that Ko is abelian, we can conclude

Notice that y may need infinitely many L-sentences to be translated
in a first order way, because is not necessarily definable. However
this (possibly infinite) translation can be done.

In conclusion, when E satisfies Case 2, then
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Let us check that the converse is also true. So assume that there are

ao , ... , aq -1 and bo , ... , br in S satisfying and that, for all

a’ .. a’ b’ .. b’) in /3o(,Sq+r+1) , is

abelian. First of all, ensures bo , ... , Now put

bo , ... , br ~ N . (N 9 bog ... , br): for, every commuta-
tor or p-th power in S decomposes as a product

where is a word on bo , ... , br and s belongs to

CS ( ao , ... , aq _ 1 ), so that s E N . By ~8 5 , N is normal in ,S , hence in 
By fl 4 , is a homomorphic image of H ; but = N -as stated

in and f3 2-, so is just isomorphic to N because H is simple; f3 6
ensures the last condition in (ii). Finally, N is abelian owing to y .

Hence ~f." ( G ) is the class of the groups satisfying either a or ~3 and
the sentences in y ; so ~f," ( G ) is elementary.

Now let us discuss the elementarity of X’ (G) for G as before. In or-
der to express (i) in a first order way, we cannot use Lemma 3.2 and the
related approach already followed in [T] for for, neither

nor S/N are abelian. By the way, notice that no group S E is

nilpotent (because ,S has a subgroup S’ Sp projecting onto H). On the
other side, if I is finite, then I is a power p m of p and
the quotient group is of the form furthermore, if S E

E X"(G), then SIN is C(p)mEÐH, and hence S is abelian-by-(C(p)mEÐH),
more generally S is abelian-by-finite because N is abelian. So we can
state at least this positive result.

COROLLARY 4.3. Let G be as above. Then the class of groups S E
E ~,( G ) which are not abelian-by-finite (as well as the class of groups
which are not for any nonnegative integer is

elementary.

PROOF. Just recall that the class of groups which are not abelian-by-
finite is elementary, as well as the class of the groups which are not

Qi H), and use the previous remarks. o
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5. The squarefree order abelian case.

In the previous section, we discussed the elementarity of X( G) when
G = C(p)~~°~ Q3 H where H is finite simple nonabelian and the order of H
is prime Now let us deal with

where H is simple abelian, hence H = C( q ) for some prime q . Of course,
we still assume q # ~ro . By the way, notice that, for H abelian, G is abelian,
too; and recall that, in this case, a group S E ~,( G ) is solvable of class 2.

With respect to the elementarity problem, we divide the groups S E
e X( G ) in two subclasses, according to whether S ’ 8P is abelian or not. No-
tice that the condition abelian » can be easily expressed by a first
order sentence in the language L of groups. Moreover, for 8 E
E 

S’SP is abelian if and only if 

In fact, lest 8 E X( G), so S satisfies the conditions (i) and (ii)’ in Corollary
2.2. If S is not in ~t, (C( p )~~° ~ ) , then S ’ SP cannot be commutative because
S’SP has infinite index in S owing to (i) and the quotient group is an ele-
mentary abelian p-group. Conversely, let 8 E X (C(p)~~°~ ) , and let A be a
normal abelian subgroup such that S/A is an infinite elementary abelian
p-group. Then both 8’ and S P are subgroups of A , ,S ’ ,S p ~ A and S ’ ,S p is
abelian.

First let us treat the groups S E ~,( G ) for which is not abelian.
A simplified version of the procedure in Theorem 4.2 and Lemma 3.2
yields

THEOREM 5.1. Let G = C(~)~~°~ (D C(q) where p # q are prime. Then
the class of the groups 8 E X(G) such that is not abelian is

elementary.

PROOF. In order to write (ii) (or also (ii)’) in a first order way, we
have simply to adapt Theorem 4.2 and use our hypothesis that is
not abelian. But now the obvious remark that G is abelian improves the
situation with respect to (i). In fact, what we have to prove is that (i) can
be written by suitable first order sentences in L . Of course we can as-
sume that (ii)’ holds. Assume that S does not satisfy (i). Consequently

has a finite index n in S . Then the subgroup N in (ii)’ has a finite
index qn in S . So we can apply Lemma 3.2; in fact, S has a normal abelian
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subgroup N such that S/N is abelian and has a finite order qn . Accord-
ingly every element of is the product of a uniformly bounded num-
ber of commutators and p-th powers. This lets us define in a first order
way S’SP inside S. Hence, if the index of in S is n , then we can
write this property by a first order sentence 3n in L. It follows that
~ -~ d n : n &#x3E; 0 1 expresses (i) in L .

So we can limit our analysis to the groups S E satisfying «S ’ S p
abelian». In this case, we can slightly enlarge our setting and assume

where q is squarefree (and prime to p). Even under this assumption,
Corollary 2.2 ensures that there is a normal abelian subgroup N of S
such that N and S’SP IN = C(q) (consequently, C(p)(a) EÐ
EÐ C( q) for some infinite cardinal a). Put

(the centralizer of in S ); C includes S’SP (because is abelian),
is normal (because is) and 0-definable (even if is not). How-
ever C may be nonabelian. So consider

(the center of C); Z still includes S’SP and is normal in S and 0-defin-
able ; furthermore Z is abelian. In particular, as Z ~ S/Z is a (pos-
sibly finite) elementary abelian p-group because ,S/Z is a homomorphic
image of S/S ’ ,S p . Z/N is a subgroup of S/N including 
and so is of the form

for some (possibly finite) cardinal P.

LEMMA 5.2. Let S be a group such is abelian, r be a posi-
tive integer prime to p. Then the following propositions are equiva-
lent :
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PROOF (1)=&#x3E; (3). For every a E sr, a can be expressed as 
where k is a nonnegative integer and bo , ... , bk E S . So

modulo S ’ , hence aP E S’SP. It follows S ’ The converse is
clear.

(3) =~ (2) Let x and y be integers satisfying 1 = px + ry . For all a 
hence 

(2) =~ (1) Clearly ,S = so

is abelian, ,S r ~ ,S ’ , hence S = ,S ’ ,S’’ _ ,S’’ .
(1) « (4) We know S = SP sr and Z, so S = ZS’r. It follows

Accordingly it suffices to show is trivial, because S ’ ~
~ Z and we have seen that, for S P abelian, S ’ ~ S 1. Conversely take a E

Then there are a natural k and bo, ... , satisfying

modulo S ’ . Put b = bo ... bk for simplicity. As ,S ’ ~ Z , Use again
(and SP x Z) and deduce b E Z, so 

THEOREM 5.3. Let S be a group, be abelian, G = C(~)~~°~ 0153
fl3 C( q ) where q is squarefree and prime to p . Then S E ~,( G ) if and only if S
satisfies the following conditions:

(i) has infinite index in ,S ;

(ii)" for every prime r dividing q , S # S 1" .

(Of course, as q and p are coprime, we can replace in (ii)" with
one of the equivalent propositions in Lemma 5.2).

PROOF. Let S E ~t,( G ). We know that (i) holds and there exists a nor-
mal subgroup N of S such that and C( q ); further-
more for some infinite cardinal a . Then S projects
itself onto C( q). Let r be a prime dividing q ; then C( q ) ~ C(q)1" and, con-
sequently, so (ii)" holds.
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Conversely let S be a group satisfying abelian», (i) and (ii)" .
Hence S/,S ’ ,S p is an infinite elementary abelian p-group. Furthermore,
for every prime r dividing Choose ar E S’S Pr.
Form

Notice that, for every prime r dividing q , ar has period r 
hence a period multiple of r modulo S ’ Then the period of a
modulo ,S ’ S pq is just q . As S ’ is an abelian group of exponent
dividing q , the cyclic subgroup generated by is a non-zero direct
summand of S ’ 8pq. Let M be a complement of this summand in
S ’ 8 p 18 ’ and let N be the preimage of M in the canonical homomor-
phism of 8’ 8P onto (hence N is abelian)
and N ~ ,S ’ (hence 8’ ~ N and N is normal in 8); finally

Hence Corollary 2.2 implies E ~f,(G).

Theorem 5.3 provides a possible approach to prove the elementarity
of is our setting. Of course, we have to handle S ’ and so in some
definable way. Here is a partial positive result.

COROLLARY 5.4. Let G = C(q) where q is squarefree and
prime to p . Then the class of the nil-2 groups ,S E X( G) for which is

abelian is elementary.

Recall that S is nil-2 (nilpotent of class 2) if and only if its derived
subgroup ,S’ is contained in the center Z(S) of S; this condition can be
easily written as a first order sentence in L . Recall also that a group in

is solvable of class 2.

PROOF. Let S’ be a group such that is abelian. As before, put
Z = Let r be a positive integer. Clearly, if Z = Z r, then S
satisfies all the equivalent conditions in Lemma 5.2; for, ,S ’ ~ Z, so Z r =
= S ’ Z ~’ and Z = 5" Z~. We claim that, when is nil-2, the converse is also
true: In fact ,S = S ’ S r, so, for every a E ,S , a
can be expressed as
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where d E S and CESB Let a, b e S and decompose a = d r c as before.
Then

(see [R], ex. 5.46 p. 118)

(because S is nil-2, and hence c e Z(S) )

(because [ b , d] E Z(S); see [R], 5.42 p. 119). Hence ,S ’ Z r. Conse-

quently Z’’ _ and Z = 

In conclusion, for S nil-2 and S’S P abelian, S E if and only if S
satisfies (i) and

Z # Z’ for all primes r dividing q .

We already know how to express (i) in a first order way (see Theorem
5.1). In fact, if (i) fails, then S’SP, hence Z , have finite index in ,S ; in par-
ticular let n be the index of S’SP in ,S . Notice that both Z and S/Z are

abelian; so use Lemma 3.2 to define and to express : S’S P I = n
by a first order sentence of L . Conclude just as in Theorem 5.1. Now re-
call that Z is 0-definable and abelian, so even Z’ is definable. Hence the
statement

Z # Z r for all primes r dividing q .

can be written as a first order sentence of L . In conclusion, the nil-2
groups such that is abelian are an elementary
class.

Finally let us give a short look at the problem of avoiding the nil-2 as-
sumption in Corollary 5.4, and hence showing the elementarity of the
whole class ~,( G ), at least when G = C( q ) with q prime and

(so G = C(p)(10) fl3 H with H simple abelian).

REMARKS 5.5 (1). SIZ q abelian» can be easily expressed in a first
order way, (namely obviously ensures the
elementarity of the class of the groups S E satisfying this assump-
tion and «S ’ S P abelian » (for, is equivalent to when

S’  Zq).
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Now assume that is not abelian.

(2) The conditions « I = n- for a given positive integer n is
still first order; if S satisfies this assumption, then Lemma 3.2 applies
(for, Z is abelian and ,S/Z is abelian, too, because S’ ~ Z). By adapting
the corresponding proof and using ,S ’ ~ Z, one sees that ,S ’ Z q is defin-
able, and so can be translated in a first order sentence.

(3) Also Z  I = n», for a fixed n &#x3E; 1, is first order. Let ,S sat-
isfy this assumption. Notice that n is a power of q , n = q h with h &#x3E; 0, and
Z/Z q is a Z/qZ-vectorspace of dimension h . Accordingly one can express
«Z ~ S’ Z q» in a first order way, by simply stating that there is some ele-
ment in Z which is not of the form

with Z E Z, co , ... , ch _ 1 commutators and 0 ~ qo , ... , qh -1  q . For, if

Z = ,S ’ Z q , then the commutators generate Z modulo Z q over Z/qZ, and
one can extract a basis of h commutators of Z modulo Z q .
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