Compact flat manifolds with holonomy group 𝐙 2 𝐙 2 (II)
Rendiconti del Seminario Matematico della Università di Padova, Tome 101 (1999), pp. 99-136.
@article{RSMUP_1999__101__99_0,
     author = {Rossetti, J. P. and Tirao, P. A.},
     title = {Compact flat manifolds with holonomy group $\mathbf {Z}_2 \bigoplus \mathbf {Z}_2$ {(II)}},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {99--136},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {101},
     year = {1999},
     zbl = {0970.53029},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_1999__101__99_0/}
}
TY  - JOUR
AU  - Rossetti, J. P.
AU  - Tirao, P. A.
TI  - Compact flat manifolds with holonomy group $\mathbf {Z}_2 \bigoplus \mathbf {Z}_2$ (II)
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1999
SP  - 99
EP  - 136
VL  - 101
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_1999__101__99_0/
LA  - en
ID  - RSMUP_1999__101__99_0
ER  - 
%0 Journal Article
%A Rossetti, J. P.
%A Tirao, P. A.
%T Compact flat manifolds with holonomy group $\mathbf {Z}_2 \bigoplus \mathbf {Z}_2$ (II)
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1999
%P 99-136
%V 101
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_1999__101__99_0/
%G en
%F RSMUP_1999__101__99_0
Rossetti, J. P.; Tirao, P. A. Compact flat manifolds with holonomy group $\mathbf {Z}_2 \bigoplus \mathbf {Z}_2$ (II). Rendiconti del Seminario Matematico della Università di Padova, Tome 101 (1999), pp. 99-136. http://www.numdam.org/item/RSMUP_1999__101__99_0/

[1] H. Brown - R. Bülow - J. Neub - H. Wondratschok - H. Zassenhaus, Crystallografic Groups of Four-Dimensional Space, Wiley, New York (1978).

[2] L. Charlap, Bieberbach Groups and Flat Manifolds, Springer-Verlag, New York (1986). | MR | Zbl

[3] L. Charlap, Compact Flat Manifolds: I, Ann. of Math., 81 (1965), pp. 15-30. | MR | Zbl

[4] P. Cobb, Manifolds with holonomy group Z2 ⊕ Z2 and first Betti number zero, J. Differential Geometry, 10 (1975), pp. 221-224. | Zbl

[5] I. Dotti Miatello - R. Miatello, Isospectral compact flat manifolds, Duke Mathematical Journal, 68 (1992), pp. 489-498. | MR | Zbl

[6] D. Heisler, On the cohomology of modules over the Klein group, Ph. D. Thesis, State University of New York at Stony Brook (1973).

[7] H. Hiller - C. Sah, Holonomy offlat manifolds with β 1= 0, Quart. J. Math. Oxford (2), 37 (1986), pp. 177-187. | Zbl

[8] P. Hindman - L. Klingler - C.J. Odenthal, On the Krull-Schmidt-Azumaya theorem for integral group rings, Comm. in Algebra, to appear. | MR | Zbl

[9] L. Nazarova, Integral representations of the Klein's four group, Dokl. Akad. Nauk. SSSR, 140 (1961), p. 1011; English transl. in Soviet Math. Dokl., 2 (1961) p. 1304. | MR | Zbl

[10] I. Reiner, Integral representations of cyclic groups of prime order, Proc. Amer. Math. Soc., 8 (1957), pp. 142-146. | MR | Zbl

[11] I. Reiner, Failure of the Krull-Schmidt theorem for integral representations, Michigan Math. Jour., 9 (1962), pp. 225-231. | MR | Zbl

[12] J. Rossetti - P. Tirao, Compact Flat Manifolds with Holonomy Group Z2⊕Z2, Proc. Amer. Math Soc., 124 (1996), pp. 2491-2499. | Zbl

[13] H. Zassenhaus, Uber einen Algorithmus zur Bestimmung der Raumgruppen, Comment. Math. Helvetici, 21 (1948), pp. 117-141. | MR | Zbl