@article{RSMUP_1998__99__247_0, author = {Zanardo, Paolo}, title = {Relations between localizations and $I$-adic completions in commutative domains}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {247--254}, publisher = {Seminario Matematico of the University of Padua}, volume = {99}, year = {1998}, mrnumber = {1636615}, zbl = {0927.13014}, language = {en}, url = {http://www.numdam.org/item/RSMUP_1998__99__247_0/} }
TY - JOUR AU - Zanardo, Paolo TI - Relations between localizations and $I$-adic completions in commutative domains JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1998 SP - 247 EP - 254 VL - 99 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_1998__99__247_0/ LA - en ID - RSMUP_1998__99__247_0 ER -
%0 Journal Article %A Zanardo, Paolo %T Relations between localizations and $I$-adic completions in commutative domains %J Rendiconti del Seminario Matematico della Università di Padova %D 1998 %P 247-254 %V 99 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_1998__99__247_0/ %G en %F RSMUP_1998__99__247_0
Zanardo, Paolo. Relations between localizations and $I$-adic completions in commutative domains. Rendiconti del Seminario Matematico della Università di Padova, Tome 99 (1998), pp. 247-254. http://www.numdam.org/item/RSMUP_1998__99__247_0/
[1] Krull intersection theorem, Pacific J. Math. 57 (1975), pp. 11-14 | MR | Zbl
[2] I. MACDONALD, Introduction to Commutative Algebra, Addison-Wesley (1969). | MR | Zbl
-[3] Differentialrechnung in der analytischen Geometrie, Springer-Verlag Berlin, Heidelberg, New York (1967). | MR | Zbl
- - - ,[4] Topics in M-adic Topologies, Springer-Verlag, Berlin, Heidelberg, New York (1971). | MR | Zbl
- ,[5] Primary decomposition of divisorial ideals in Mori domains, J. Algebra, 117 (1988), pp. 327-342. | MR | Zbl
- - ,[6] Torsion-Free Modules, The University of Chicago Press, Chicago (1972). | MR | Zbl
,[7] Modules over domains large in a complete discrete valuation ring, to appear. | MR | Zbl
- ,[8] Local Rings, Wiley, Interscience (1962). | MR | Zbl
,[9] Mehrfach perfekte Körper, Math. Ann., 108 (1933), pp. 1-25. | JFM | MR
,[10] U. ZANNIER, Commutative domains large in their M-adic completions, Rend. Sem. Mat. Univ. Padova, 95 (1996), pp. 1-9. | Numdam | MR | Zbl
-