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Additive Extensions of a Barsotti-Tate Group.

ELENA MANTOVAN(*)

ABSTRACT - In this paper we classify up to isomorphism the additive extensions of
a Barsotti-Tate group, in positive characteristic p over a perfect field k and in
characteristic 0 over W( k ) the ring of Witt vectors with coefficients in k. The
extensions arise as group functors associated to suitable submodules of the
Dieudonn6 module. In particular we give an explicit description of the univer-
sal additive extension in both cases.

1. - Preliminary.

In this section we fix notations (for those we do not mention explicitly
we refer to [3]), recall the main definitions and some known results.

1.1. Let p be a prime number and k a perfect field with characteristic
p. Put A = W( k ) the ring of Witt vectors with coefficients in k, K =
= frac (A) its quotient field and denote by D~ the Dieudonn6 ring of k .

Let G be a Barsotti-Tate group over A and Gk its special fibre. Let R
be the affine algebra of G , P the coproduct on R and E the coidentity; put
I~ + = ker E and denote by Rx the ring Q9AK, by Rk = R l5A k the affine
algebra of G~ and by a: the natural projection.

DEFINITION 1. An element h E RK is an integral of G if dh is a one-
form of R.

An integral h of G is normalized if = 0 .
An integral of the first kind of G is an integral h such that

(*) Indirizzo dell’A.: Dipartimento di Matematica, Universita di Padova, Via
Belzoni 7, 35131 Padova.
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An integral of the second kind of G is a normalized integral h such
that

The integrals of the first and the second kind form two sub-A-mod-
ules of the A-module I(G) of the integrals of G , which we denote by h (G)
and I2 ( G ), respectively.

Let us define also the following sub-A-module of I2 (G):

We now recall the definition of the Dieudonn6 module of Gk and some
results we need later on.

DEFINITION 2. Let E be a formal group over k, the Dieudonng mod-
ule of E is M(E) = Hom (E, CWk), the group of homomorphisms of k-
formal groups from E to CWk, the covectors formal group over k (see [3]
ch. III, par. 1.2).

If we denote by B the affine algebra of E and by PB its coproduct,
then by the Yoneda’s lemma we obtain:

thus M(E) is naturally a sub-Dk-Module of CWk(B).
Moreover we have the following result.

THEOREM 3. Let E be a formal p-group over k (i. e. a formal group
over k such that and denote by M(E) its Dieudonn6
rrLOdule. Then E(S) = HomDk (M(E), CWk (,S) ) , for each finite ring S over
1~ ([3] ch. III, Thm. 1).

For each A-module T and each homomorphism of A-modules f : T-
-~ P, put = T ©AA = f ®A lA, where the A-structure on A is de-
fined by the i-th power of the Frobenius map.

Let M be the Dieudonn6 module of Gk and denote by V: M -~ M ~ 1 ~ its
Verschiebung.

THEOREM 4. (1) There exists an isomor~phism of A-modules

+ 00

which is defined by 12 p mod pR, where e~ is
n=O

a lifting of a - n, for each n E N.
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(2) There exists an isomorphism of A-modules

which is defined by ( a _ n )n E ~ H [ ~ ~ - ~n + 1 ) ~ p ~+ 1 ~ mod R .
n=0

(3) The restrictions wo: 
+ and V 0: 

+

of wand 1/J, respectively, satisfy the relation

where c : is the homomor~phism induced by the
inclusion of in I2 ( G ).

(4) Let us assume p ~ 2 . Put L = h ( G ) and denote by j: L -~
the homomorphism induced by the inclusion of I1 ( G ) in

I p ( G ), let (2: L ~ M be the composed map wj 1 o j ; then:
- the homomorphism Ki: LIPL - MIFM, induced by ~o , is an

isomor~phism;
- for each p-adic ring ,S over A :

i.e. we can identify each homomorphism of topological rings over A,
with the pair cp 2 ), where 99 and cp 2 =

which satisfies the relation ([3]
ch. II, Prop. 5.5; ch. III, Prop. 6.5; ch. IV, Thm. 1; [4] ch. V, par.
5.5).

We introduce now the Barsotti algebra of Gk .
Let us denote by Rk---3-Rk the homomorphism of k-bialgebras

which corresponds to the multiplication by p on Gk, and put R0 =
- lim endowed with the direct limit topology.

For each neN, let run : be the natural homomorphism from
the n-th element of the direct sistem into the direct limit (let us remark
that, since is injective, i n is an injective homomorphism of topologi-
cal k-rings, for each we define a coproduct over R0 by

for each x E=- 91’ such that x E z n (Rk ).

DEFINITION 5. The Barsotti algebra of Gk is the pair (ffi, r), where
91 is the topological completion offfio and r : is the injective ho-
momor~phism of k-bialgebras induced by -r 0 (see [1] ch. IV, par.
33-37).
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We consider now W(N) the ring of Witt vectors with coefficients in 91
and denote by ç: W(9i) the projection on the 0-component; there is a
naturally defined bialgebra structure on via 

Let biv (fi) be the module of bivectors with coefficients in 91 (we recall
that, for each ring S over 1~ , the Dk-module of bivectors with coefficients
in ,S is bivk (S) = lim (CWk (,S)~ - i~ , [3] ch. V, par. 1.3); by the
definition of bivectors, W(91) is naturally a sub-A-module of biv (ffi).

THEOREM 6. (1) There exists an unique injective homomorphism
of A-algebras j : R ~ W(91) such that ( j P = and ç 0 j =
=íoa.

(2) The homomorphism j can be extended to an embedding of A-
modules j ’ : I(G) - biv (N) ([2] Thm. 4.3.2; Prop. 4.3.1, part 3).

1.2. Let A be a pseudocompact commutative ring and G a smooth for-
mal group over A .

Let us denote by c~a the additive formal group over A, i . e . 

= (S, + ), for each finite ring S over A .

DEFINITION 7. An additive extension of G is a pair (H, n) consist-
ing of a formal group H over A together with a epimorphism of formal
A-groups H -~ G such that ker n is isomorphic to G’, for some
n which is called the degree of the extension.
A homomorphismf:(H1’ ,~ 1 ) -~ (H2 , ~ 2 ) of additive extensions of G

is a homomorphism f: of formal such that n2of=
= n1.

Since G is a smooth formal group, any additive extension (H, of G
admits a section o : G - H of 7r. It is then easy to check that the set of

isomorphism classes of additive extensions of degree n can be identified
with Ext ( G , G’), the group of isomorphism classes of extensions of G by

with Ext1(G, and with H 2 ( G , ~ a )s , the A-module of classes of
symmetric factor sets modulo trivial ones.

DEFINITION 8. An additive extension (H, 7r) of G is decomposable,
if there exists an additive extension (H’, .7r’) and an integer n ~ 1, such
that (H, n) is isomorphic to n’ X 0).

DEFINITION 9. An additive extension (H, n) of G is universal

if, for each n the homomorphisms
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which arises from the exact sequence 0 is an

isomor~phism (see [5] ch. 1, par. 1, probl. B).

It follows from the definition that if Ext ( G , is not a free A-mod-
ule of finite rank there are no universal additive extensions of G; more-
over, if we suppose that Hom ( G , = 0 , then if an universal additive
extension of G exists, it is unique up to a unique isomorphism.

DEFINITION 10. A rigidified additive extension of G is a pair con-
sisting of an additive extension (H, n) of G together with a A-linear
section 1 of tn(A): tH (A) --~ tG (A), the corresponding tangent map over A .
A homomor~phism f: ((H, 7r), 1) ~ ((H’, n ’), L’ ) of rigidified addi-

tive extensions of G is a homomor~phism f : (H, 7r) - (H’, n’) of addi-
tive extensions of G such that tf(A) 0 1 = l’ .

Since G is a smooth formal group, its tangent space over A is a free A-
module, then any additive extension of G admits a rigidification, which is
determinated up to an element of HomA (tG (A), (let us remark
that HomA (tG (A), tkern(A» = if n is the degree of the

extension).
As before the set of isomorphism classes of rigidified additive exten-

sions of degree n can be identified with Ext"g ( G , the group of iso-

morphism classes of rigidified extensions of G by Gna.

1.3. Let us maintain the notations of 1.1 and consider a Barsotti-Tate

group G over A = W(k).

REMARK 11. To each set of integrals of the second kind of G,
~ hl , ... , hn ~, is associated a rigidified additive extension of G , of de-
gree n.

In fact ... , hn} c I2(G) and choose {U1, 9 Un I a set of inde-
terminates over 1~ ; then, for i = 1, ... , n, y i = Q9 1 - 1 Q9 hi is a

symmetric 2-cocycle of G and the homomorphism defined on

by for all x E R , and Ui + 1 Q9Ui+yü
for i = 1, ... , n , is a coproduct.

The rigidified additive extension of G associated ... , hn ~
is ((H, x), 1), where ... , Un ], x is the homomorphism
of A-groups corresponding to the inclusion of A-bialgebras

9 ... , Un ] and 1 is the tangent map over A corresponding to

the homomorphism of A-algebras defined by
for all and Ui - 0, for i = 1, ... , n .
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Let us remark that from the construction it follows that

In particular, by means of the previous construction, we have defined
a natural map, which we denote by from I2 ( G ) to the set of rigidified
additive extensions of G of degree 1.

We conclude this section by recalling the following result, which de-
scribes the relations existing among the A-modules of integrals of G and
its additive extensions.

THEOREM 12. Notations as before. Let us consider the following
diagram,:

where:

- a is the restriction to I1 ( G ) of the differential map;
is the homomor~phism induced on the quotients by ~3 ;

- ~ is the map that forgets the rigidifications;
- y is the identification of COG with ker 6 ;

- j is the homomor~phism induced by the inclusion of I, (G) in
I2(G).

The diagram is commutative, with exact rows and vertical isomor-
phisms ([4] ch. 5, Thm. 5.2.1, par. 5.3).

Let us remark that, from the surjectivity of {3 asserted by the previ-
ous theorem, it follows that the map, which associates to each h E I2 (G)
the 2-cocycle Ph - 1 - 1 is surj ective.

2. - Additive extensions of a Barsotti-Tate group over W(k).

In this section we classify up to isomorphism the additive extensions
of a Barsotti-Tate group G over A = W(k).
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2.1. Let us maintain the notations of 1.1 and assume p # 2 (the case
p = 2 must be treated distinctly-see Thm. 4, part 4).

PROPOSITION 13. To each additive extension (H, n) of G there is a
canonically associated NH of M ~ 1 ~ , which contains

_

PROOF. Let (H, n) be an additive extension of G, of degree n.
Let us choose a symmetric factor set y : G x G  G , associated to

(H, n) via an isomorphism of kerjr with G~ and a section of x . Then, if

we denote by y * : A [ T 1, ... , the homomorphism of A-alge-
bras corresponding to y, the set of symmetric 2-cocycles associated to y
is {Yi~...)7~}) where /~=y*(7~). For i = 1, ... , n let us choose

such that Q9hi=Yi i (see Thm. 12) and put

where we denote by [ hi ] the image of hi in M ~ 1 ~ via the map
yo 

Now it is straightforward to verify that the sub-A-module NH is inde-
pendent of the construction.

Let us remark that, since VQL is a direct summand of M(1) and 
is a free A-module of finite rank, for each sub-A-module N of M(1), con-
taining VgL , the quotient NIVOL is a free A-module of finite rank.

Thus the following definition makes sense.

DEFINITION 14. The rank of an additive extension (H, 7r) of G is
the rank of the free A-module 

An additive extension of G is non-degenerate if its degree is equal to
its rank.

From the construction of the sub-A-module associated to an additive
extension of G it follows that the degree of an additive extension (H, x)
is always greater than or equal to its rank.

We now prove that each degenerate additive extension is decompos-
able.

PROPOSITION 15. Let (H, x) be an additive extension of G, of degre
n and rank r. Then (H, Jt) is isomorphic to (H nd X 0),
where J’l nd) is a non-degenerate additive extension of G , of degree
r, which is called the non-degenerate component of (H, jr).
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PROOF. Let us choose an isomorphism of ker.7r with G~ and a section
of .7r, then we obtain an isomorphism (of formal schemes over A) of H
with GxG~, i . e . an isomorphism (of topological A-algebras) of

... , Tn ] with E, the affine algebra of H.
Let Ul , ... , Un be the images of 1 0?’!, ... , 1 by con-

struction {y i = O Ui| i = 1, ... n} is a set of symmetric
2-cocycles of (H, Jt) (actually this set is the same we introduced in the
previous proposition). If we consider the set of integrals of the second
kind of ... , hn ~, such that i (for i=
=1, ...n), then we deduce that II (H) 1, ... , n).

Thus the associated sub-A-module NH in M ~ 1 ~ is NH = VoL + N’ ,
where = 1, ... , n ~ (we denote by L the A-module Il ( G ) ) .

Let us choose now [ fl ], ... , [ fr ] E N’ lifting an A-basis of 
then From this decomposition of NH
it follows that there exist Vl , ... , Vn E E lifting (for
i = 1, ... , r), such that E = R[V1, ... , Vn ] and

In fact let B x n ) and D x r) such that [ f ] = B [ h ]
and [ h ] = D [ , f I modulo VQL. Then we deduce that BD = lr and

that ( ln - DB) h = g_ + a, for some suitable g1, ... , gn E L and

a,, &#x3E; ... 

We obtain the previous relations by defining t( fi , ... , fr ) _
= B t(h1, 9 ... , hn ), ... , Vr ) = B 9 ... , I Un ) and choosing
IVr, 1, ... , ... , Y,t ~ a maximal linearly indipendent sistem
of rank r (we define t( Yl , ... , Yn ) _ ( ln - DB ) t( Ul , ... , Un ) -
-t(al, ..., an)).

From the construction, it follows that the coproduct on E is de-
fined by

Thus E = R [V1, ... , Vr] ®A A [Vr + 1, ... , Vn], where R [Vl , ... , Vr] is the
affine algebra of a non-degenerate additive extension of G and

A[Vr + 1, ... , Vn] is isomorphic to the affine algebra of G~, and that de-
scribes the desired isomorphism.
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2.2. In view of the previous proposition we can consider only non-de-
generate additive extensions of G. Now we proceed by associating to
each sub-A-module N of M ~ 1 ~ , containing VOL, a non-degenerate addi-
tive extension of G, which we denote by (HN, 

Let S be a p-adic ring over A , we denote by SK its generic fibre, by Sk
its special fibre and by a: S - Sk the reduction modulo p. Let t : 

and c : be the natural projections of A-modules.

PROPOSITION 16. Let N be a sub A-module of M ~ 1 ~ , containing
VoL , and denote by r : L - N the factorization of V 0 (}: L - 
through N.

Let HN be the formal defined by

for each p-adic ring S’ over A , and .7r N: HN -~ G the homomor~phism of
formal defined by (95, cp) ~ (Ø 0 í, cp).

Then (HN, n N ) is an additive extension of G , of degree r =

= rkANlrL.

PROOF. Let S’ be a p-adic ring over A and consider the following
diagram:

By definition a point of HN (,S ) is a pair of homomorphisms ( cp 1, cp 2 ) such
that the diagram commutes, i. e.

Let us consider the formal A-group HomA(N/rL , .); since N/zL is a
free A-module of finite rank r, it is isomorphic to G~.

Let us define a homorphism of formal A-groups
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by 0 - 0), for each p-adic ring S over A , where we denote by pr
the canonical projection from N to N/zL . It is easy to check that actually

thus we obtain the following sequence of formal A-

groups :

Now we have to check that the sequence is exact. The surjectivity of
.7rN follows from the surjectivity of c o t and the facts that N is a free A-
module and rL a direct summand of N; the rest is straightfor-
ward.

THEOREM 17. Let N be a of which contains

VQL.
Each non-degenerate additive extension (H, Jl) of G such that NH =

= N is isomorphic to (HN, -r N)-

PROOF. Let (H, Jt) be a non-degenerate additive extension of G, of
degree r, such that NH = N, and let E be the affine algebra of H . With
the notations of the previous proofs we have:

- E = R[ Ul , ... , Ur], where Ul , ... , Ur are algebraically indepen-
dent over R ;

- ... , [ hr ] ~, ... , [ hr ] ~ is a set of linear-
ly independent elements over A.

Let us define e : h (H) - N for all 9 E II ( G ) = L , and hi -
- Ui H [ hi], for i = 1, ..., n ; then E is an isomorphism of A-modules, since
(H, jr) is non-degenerate.

For each p-adic ring S over A , a point of H(,S) is a homomorphism
cp : E - S of topological rings over A and is determinated by its im-

age in G(S), together with the values cp( Ui ), for i = 1, ... , r.

Let us define a homomorphism

by (/1 ( ~P ) ~ ê -1, IR Q9A 1k)IM), for each p-adic ring S over A.
Since cp( Ui) E,S, for i = 1, ... , r, we deduce that actually 
moreover, from Theorem 4 (part (2)), it follows that 

Now let S be a p-adic ring over A and (cp 1, cp 2 ) be a point of HN(S).
Let us consider the pair it identifies a homomor-

phism f : R -~ S’ of topological rings over A such that T 1 our = I, ( f ) and
(see Thm. 4, part 4).
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Moreover, for i = 1, ... , r, I2 ( f )( hi ) - cp 1 ( [ hi J ) E ,S , thus we can de-
fine a homomorphism by 
- cp 1 ( [ hi ) ), for i = 1, ... , r .

It is easy to check that the map g: HN - H, defined by ( cp 1, cp 2 ) 
is the inverse homomorphism of ..

2.3. We conclude this section by studying the affine algebras of the
non-degenerate additive extension HN, for each sub-A-module N of M(’)
which contains VQL.

Let j : and j ’ : be as in Theorem 6, so we
can consider R as a sub-A-bialgebra of and I(G) as a sub-A-module
of biv 

We recall that there exists a canonical embedding ‘~ : M- biv (9l),
which is defined by mapping each x E M to the unique element p E
E biv such that p j i = xi , for all i  0, and ®,u ( [ 1 ],
ch. IV, Thm. 4.31).

Since the Verschiebung map on biv (R) is an isomorphism, we can ex-
tend ’6 to an embedding by putting ‘~’ h =
= for each h E M ~ 1 ~. Thus M (1) can be canonically identified
with a sub-A-module of 

Let us remark that, by construction, for
each 

THEOREM 18. Let N be a containing VQL,
and (HN, the associated additive extension of G . There exists one
and only one sub-A-bialgebra EN of W(91), containing R , such that its
module of integrals of the first kind is N.

The bialgebra EN represents HN, i. e. HN(S) = Hom;into(EN, S), for
each p-adic ring ,S over A ; thus the affine algebra of HN can be identi-
fied with the completion of EN for the profinite topology.

PROOF. Let us choose hl , ... , hr E N which lift a basis of N/VoL ; for
each i E ~ 1, ... , r I we denote by p j i the additive bivector l3’ hj and by

a lifting of hi .
For each i E ~ 1, ... , rl let us consider the 2-cocycles y i , associated to

hi*, and put ki = h*i - ui ; thus ki E W(R) and yi = W(PRk)ki - ki O 1-
- 1 15£ I, since p j i is additive.

Moreover, since W(9l) does not contain any additive elements,
£j i is the unique element of which satisfies the previous cond-
ition.

Let us define EN = R[~,1, ... , ~, r ]. It is straightforward to verify that
EN is a sub-A-bialgebra of W(9l) which depends only on N, not on the
choice of hl , ... , hr E N .
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Now let us denote by EN the completion of EN for the profinite topol-
ogy, it follows from the construction that

Then the homomorphism

which extends the identity on R by i( Ui ) _ £ j i for i = 1, ... , r, induces an

isomorphism on the modules of integrals of the first kind; thus, in view of
the Jacobian criterion, we conclude that i is an isomorphism.

3. - The universal additive extension of a Barsotti-Tate group over
W(k).

In this section we deduce from the previous results the existence and
an explicit description of the universal additive extension of a Barsotti-
Tate group G over A = W(k).

3.1. Let us maintain the notations of section 2.

THEOREM 19. The additive extension (HM c 1 &#x3E; , of G is univer-
sal.

PROOF. By Definition 9 we must prove that, for each the

map

which associates to each the isomorphism
class of the amalgamated 
whose structural homomorphisms are the embedding of &#x3E; in

Hm(l) and f, is an isomorphism. In view of Theorem 17, to prove the
surjectivity it suffices to show that, for each sub-A-module N of 
containing VoL , there exists a homomorphism 
,7rN such that the additive extension (HN, is isomorphic to

&#x26;( eN).
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Let S be a p-adic ring over A and consider the following commutative
diagram:

where (0 1, 82) E=- Hm (1) (S).
We define the homomorphism of formal A-groups

o j , where 1 is the inclusion of NIVQL in 
Then the desired isomorphism with is the map in-

duced on the amalgamated sum by the homomorphism from 
EÐ HomA (NNgL, .) to HN which maps «01, e 2 ), o j + ~ o ~r, 0 2)
(we denote by j the inclusion and by pr : the pro-
jection onto the quotient).

Finally from the theorem of elementary divisors, since [8] is a surjec-
tive homomorphism between free A-modules of the same rank, it follows
that [8] is an isomorphism.

Actually it is possible to give a more transparent description of the
universal additive extension of G, namely that stated without proof by
Fontaine in [3] (ch. V, par. 3.7). This is done in Theorem 23, but we first
need to prove some lemmas.

Let us maintain the notations of the previous theorem, moreover put
CWA (S) - CWk (Sk) and define

+ 00

by I E p -’ a P’ n I (see [3] ch. 11, prop. 5. 1), then 16 is a homo-
n=O

morphism of A-modules and it is easy to check that tow = W 0 q.
Let us remark that, from the definitions of CWA (S) and 
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([3] ch. IV, par. 1.3), it follows that the two homomorphisms

are injective. Moreover, if we denote by II the homomorphism

they satisfy the condition H o ) = 5 0 q
and ker II c Im C (see [1] ch. I, Prop. 1.9, Prop. 1.10).

LEMMA 20. Let D be a A[V]-module, S a p-adic ring over A and Sk
the special fibre of S . Then the homomorphisms

defined by W 0 V, and

defined by are injective.

PROOF. Let be a homomorphism of A[ V]-modules
and assume = 0 . Recalling that we deduce that
0 = (w o 1jJ) 0 V, = (w o 1jJ, for each n e N; then t - y = 0 and so, from
the injectivity of ~, it follows that y = 0.

In the same way one can also prove that e is injective. 8

LEMMA 21. Let D be a A[V]-module, S a p-adic ring over A and Sk
the special fibre of ,S . Then
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PROOF. Let us consider the following commutative diagram

and define the homomorphism

by y - (16 o y~ ). It is easy to check that actually

moreover, from Lemma 20, it follows that p is injective.
We prove now that p is also surjective onto the fibre product.
Let (Y1, Y2) E HomA(D, SK) x HomA(D, SKIps) HomA[V] (D, CWk(Sk) )

and consider the E9 From
_ 

n -
we deduce that and then 

since ker 17 c Im t. 
_

Put W= (~I 1m ~ ) -1 1 0 W: D ~ CWA (S ), it follows from the construction
that W is a homomorphism of A[ V]-modules and W = 1/J 1, moreover

then, thanks to Lemma 20, we conclude
that q o 

LEMMA 22. Let M be the Dieudonne module of Gk . Then the homo-
morphism of formal k-groups,

defined by V, is surjective.

PROOF. Let S be a finite ring over and 1jJ: a homo-

morphism of A[ V]-modules. Since ( y o V) 0 F = F 0 (1jJ 0 ~, d (S)( y~ ) is an
element of H omDk (M , CWk ( S ) ) .

Let us recall that M is a free A-module and its Verschiebung V: M
--~ M ~ 1 ~ is inj ective; then from the inclusion in VM , by the theorem
of elementary divisors, there exist two A-bases q e ~ of M and M ~ 1 ~, re-
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spectively, such that the corresponding matrix of V is 1d 0 ,
where h = rkA M and d = dimk M/FM .

Now let and define an A-linear homomor-

phism y : on the A-basis ~ in the following way:

(let us recall that the Verschiebung map on CWk (,S) is surjective). Then
from our construction, it follows that i7i = F ç j, for j = d + 1, ... , h, thus
1/J is A[ V]-linear and cp = y o V .

THEOREM 23. Let U(G) be the forn2al A-group defined by

for each p-adic ring S over A , and denote by f3: U(G) - G the homomor-
phism of formal A-groups which maps e to (w o e 0 V 0 o , q 0 O o ~.
Then (U(G), ~3) is the universal additive extension of G.

PROOF. Let S be a p-adic ring over A and consider the following
commutative diagram, where e E (M ~ 1 ~ , CWA (S)).

Let us remark that, for each e E U(G)(,S), the pair (íù 0 O o Vo o,
q o (9 o V) satisfies the condition t o (w o H o V o p) = w o (q o H o V) o p and
the homomorphism q o O o V is Dk-linear; therefore is actually an
element of G(S).
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Let us define a homomorphism of formal A-groups:

by 0 -&#x3E; (w 0 0, q, 0 - V).
Since q , 0 , V is a homomorphism of Dk-Modules and 

satisfies the two conditions:

q induces a homomorphism from U(G) to HM(1) (see Prop. 16), which we
denote by ~. Since it is easy to check that p satisfies the condition

/3 , we limit ourselves to proving that j is an isomorphism. In
view of Lemma 20, it follows from the definition that j is injective, so we
need only prove that it is surjective.

Let ( cp 1, and choose an A[ V]-linear homomorphism
8 : M (1) - such that 0 - V = cp 2 (see Lemma 22). Then the homo-

is an element of such

that 0 - Vo g = 0 and = 0, or equivalently such that O(M (1» c ,Sk and
~(VM) = 0 (let us recall that It follows
that the map defined by .r~(..0~.,~~), is
a homomorphism of A[ V]-modules, in particular 
Then the pair ( cp 1, B + ~ ), is an element of 
X HomA(M(1), SKIPS) (M ~ 1 ~, CWk(Sk)) and so, thanks to Lemma 21,
there exists a homomorphism of A[ V]-modules O : such
that woe = q 1 = 0 + 0, which is the same as woe = cp 1 and

so that r~(O) _ (cp 1, cp 2).

Let us remark that from the previous theorem it follows that the uni-
versal additive extension of a Barsotti-Tate group G over A depends only
on its special fibre Gk .

3.2. From the knowledge of the universal additive extension of G we
can deduce the following result which completes what is asserted in

Proposition 15.

PROPOSITION 24. An additive extension of G is decomposable if
and only if it is degenerate.
~ 

PROOF. In view of Proposition 15 and Theorem 17 we need just to
prove that (HN; 7lN) is non-decomposable, for each sub-A-module N of

which contains VoL .
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We recall that, in the proof of Theorem 19, we have shown that HN =
= U( G ) I_IkerB ker nN, where the structural homomorphisms of the amal-
gamated sum are the embedding of ker 13 in U(G) and 

(we denote by (U(G), /3) the universal additive extension

of G) .
Let us assume that (HN, :rl N) is decomposable, for any N as before;

then there exists an isomorphism W: (HN, ~ (H Jt x 0), for a
suitable additive extension (H, Jt) of G. By the universal property of
(U(G), B), there exists a map E : ker B - ker n such that e N =
=to£ ( c : ker n - Ga X ker n denotes the natural embedding); then
the map induces a homomorphism
3 : on the quotients. Since V’lker11:N is surjective so is d ,
but this is impossible because coker 0 N is a p-torsion group (this fact fol-
lows from the theorem of elementary divisors); thus our assumption is
false.

4. - Additive extensions of a Barsotti-Tate group over k.

In this section we classify up to isomorphism the additive extensions
of a Barsotti-Tate group G over 1~ , a perfect field with characteristic p.
In particular we consider the special fibres of the additive extensions of
any lifting of G over W(k), noting that the universal additive extension of
G is the special fibre of the universal additive extension of its lift-

ings.

4.1. Let GL be the lifting of G over A = W(k) associated to (L, Q) (see
Thm. 4, part (4)).

The following proposition describes the relation between the additive
extensions of GL and the additive extensions of G.

PROPOSITION 25. The map that to each additive extension (H, of
GL associates its special fibre (Hk, 7rk) induces an epimorphism

PROOF. Via the isomorphisms Ext (G , Ga,A) ==M(1)NeL (see Thm.
4, part (3) and Thm. 12) and Ext ( G , ([6] ch.
IV, par. 1 ), y corresponds to the natural projection 
--~ M ~ 1 ~ /1/M. Since VM = VjoL + pM (1) , g is the map of the reduction modu-
lo p, thus y is surjective. -
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The previous proposition tells us that each additive extension of G is
isomorphic to the special fibre of an additive extension of GL .

Now we give an explicit description of the special fibre of the additive
extension of GL associated to a sub-A-modules containing VoL ,
which we denote by (HN, L , 7CN,L).

PROPOSITION 26. Let N be a sub A-module containing VoL ,
and let (HN, L , 7r N, L) be the associated additive extension of GL .

Them for each finite ring ,S over k :

acnd (

In particular the special fibre of the universal additive extension

PROOF. In view of Theorem 19 we know that

then for each finite ring S over k, if by we denote S with the struc-
ture of A-ring induced by the reduction map c: A - k, we obtain:

It follows from the definitions that = CWk (,S) as A[ V]-mod-
ules.

Thus in view of Theorem 23

Moreover
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and

Finally it is straightforward to check the assertion regarding the homo-
morphism 

4.2. In view of the results obtained in the previous sections we can
now easily prove that the universal additive extension of G is the special
fibre of the universal additive extension of any lifting of G over A.

THEOREM 27. With the previous notations, (U(GL)k,(f3L)k) is the
universal additive extension of G.

PROOF. Let (H, a) be an additive extension of G, then there exists
an additive extension (H, 5i) of GL such that (Hk, (H, n). From the
universal property of ( U( GL ), it follows that (H, 5i) is isomorphic to
(U(GL) I_Iker¡3Lkeric, for a suitable and unique homomor-
phism f : Then, if we consider the special fibres, we ob-
tain that (H, n) is isomorphic to (U(GL)k 
where the structural homomorphism is fk which is unique because f is
unique.

4.3. Let us introduce the following additive extensions of G.
Let N be a sub-A-module which contains VM, and denote by

(U(G), fl) the universal additive extension of G.
We define the following formal group over k:

I I

where the amalgamated sum is defined by the embedding of ker f3 in
U( G ) and the homomorphism

which corresponds to the inclusion of N/VM in 
Let be the homomorphism of formal k-groups

{3 I_Ikerpo.
PROPOSITION 28. With the previous notations, for each sub-A-
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moduLe N containing VM, (FN, an additive extension

of G , of degree dimk NIVM -

PROOF. It follows from the definition that the sequence of formal

k-groups

is exact. We conclude by observing that .) = G~, where
s = dimkN/VM. 

Let us recall the notations of 4.1; let GL be the lifting of G over A as-
sociated to (L , Q) and (HN, L , :rl N L) the additive extension of GL associ-
ated to a sub-A-module N of which contains VQL.

THEOREM 29. For each a sub-A-module N of containing
VQL,

where r and s are the degrees of (HN, L , and (FN+VM, r N I VM),
respectively. 

~ 

PROOF. From the definition of (FN, r N) and the characterization of
(HN, L , Proposition 26, it follows that

where the amalgamated sum is defined by the embedding of
= Homk ((N + VM) IVM, .) in FN + vM and the homomorphism

0 N from Homk ((N + VM) to Homk + pN), .), which
corresponds to the map induced on the quotients by the inclusion of N in
N+VM.

By considering the canonical isomorphism (of k-spaces) of N j(V(2L +
+ pN) with (N f1 VM) I(VQL + (N + VM) IVM, we obtain an iso-
morphism of Homk (NI(VQL + pN),.) with Homk ((N f1 VM) j(V(2L +
+ pN), .) x Homk ((N + VM) /VM, .) such that 0 N corresponds to the nat-
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ural embedding into the product. Then we deduce that

where

Finally we can recognize the decomposable additive extensions of G.

PROPOSITION 30. Let N be a If N D VM, then
the additive extension (FN,rN) is non-decomposable.

Let L be the associated to a lifting of G over A ; if N D V()L,
then the special fibre of (HN, L , is non-decomposable if and only
if 

~ ’

PROOF. Let N be a sub-A-module of M ~1~, containing VM, then

where the amalgamated sum is defined by the homomorphism

which corresponds to the inclusion of N/VM in 
Let us assume that (FN, r N) is decomposable, then there exists an

additive extension (H, jr) of G and an isomorphism O N : (FN, i N ) -
- (Ga X H, 0 X n).

From the universal property of ( U( G ), /3) we know that there exists a
homomorphism a: ker {3 ~ ker:Jl such that loa = where we de-
note by ON: x kerJt the restriction of O N on the kernels
and by t the natural inclusion of ker n in ~a x 

Note that is surjective because ON and E N are, while t - a is not,
which is impossible.

Now let us assume that then

where q = n VM) /(VeL + pN) (see Thm. 29). Since
is non-decomposable, (HN, L , is non-decompos-

able if and only if (N n VM) /(VeL + pN) = 0 .
It is easy to check that the last condition is equivalent to N n =

= pN .
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Infact, if we assume that N n VM = VoL + pN, recalling that pM (1) c
c VM and n VQL = p(VeL) (see Thm. 4, part 4), we obtain:

On the other hand, recalling that VM = VQL + from pN = N n
we deduce:

4.4. We conclude by proving that each non-decomposable additive
extension of G is represented by a sub-k-bialgebra of the Barsotti alge-
bra 91 of G , which contains R .

THEOREM 31. Let N be a sub-A-module of M ~ 1 ~ , containing VM,
and (FN, iN) be the associated additive extension of G.

Then there exists one and only one sub-k-bialgebra DN of ffi, con-
taining R , such that its module of invariant one-forms can be identi-
fied with 

The bialgebra DN represents FN, i.e. FN(,S) = S), for
each finite ring S over k; thus the affine algebra of FN can be identified
with the completion of DN for the profinite topology.

PROOF. Let N be a sub-A-module of M ~ 1 ~ , which contains VM.
We organize the proof in 3 steps.

1 ) Definition of DN .
Let GL be a lifting of G over A and fix an embedding of its affine alge-

bra RL in W(91), as in Theorem 6. In view of Proposition 25, there exists a
sub-A-module T of M ~ 1 ~ , containing VgL, such that (FN, iN) =
= (HT, L , T satisfies the two conditions: N = T + 
= T n ~roM ~ 1 ~ (see Prop. 30). Moreover, by Theorem 18, we know that there
exists a sub-A-algebra ET of W(91), which contains RL , such that its mod-
ule of invariant one-forms can be identified with T.

Let us denote by g: W(91) the projection on the 0-component
and put DN = ç(ET). Then DN is a sub-k-bialgebra of 91 , which contains
R , and it is not difficult to check that it depends only on N, not on the
choice of T and L .

2) The module of invariant one-forms of DN can be identified with
N/pM(1).
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Let us choose L and T as before. The map ET ~ DN induces a
homomorphism and, since ç lET is surjective,
so is Composing with the canonical isomorphism be-
tween T and and reducing to the quotient, we obtain a homomor-

whose image is 0-)k (DN)- Since 
it suffices to prove that q T is injective.

We note that we can limit ourselves to considering the case N = 
and In fact, for any T , if we denote by j : 
the map induced by the inclusion of T in M ~ 1 ~ , we obtain that

nT = nM (1)o j.
Let us denote by d : the composition of the differ-

ential map of with the inclusion of in and by
t : the reduction modulo , then it follows from the
definition = Thus to prove that is in-

jective is the same as proving that ker (Q!.( ç) o d) = pM (1).
1. 

Let us choose a set of parameters on ... , xd ~, and one of its

EM(1)çbivOR); since h is an integral we may write

where h( v ) = 1, ... , d}, for all vENd and h ’
is an element of W(9t). Thus the image of h in is

where the exponents ei are such that = Xi , and in 

Now let us assume that cv(s)(dh) = 0. Then, for each i E {1, ... , d} and
o=0; if we choose ...,d} such that h( v ) _

av,o = 0 we deduce each This
means that and then the element of I2 (RL ) which corre-
sponds to h belongs to thus 

Since the inclusion of pM(1) in is obvious, we con-
clude.

3) DN represents FN .
Let us denote by a: the homomorphism induced by
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ç lET: ET ~ DN ; what we have proved at step 2 is equivalent to asserting
that cvk ( ~): is an isomorphism. Then, by the Jaco-
bian criterion, we deduce that a is an isomorphism and thus
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