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Homogenization of Linear
and Nonlinear Ordinary Differential Equations

with Time Depending Coefficients.

MILENA PETRINI (*)

ABSTRACT - We study the effective behaviour of solutions of a linear equation
+ a E (t, x ) u £ = 0 and a non linear Riccati non homogeneous one at u +

+ a’(t, X)(UE)2 = f (t, X), f&#x3E; 0, when a ~ -a in L °° weak* and data at time
t = 0 is non oscillating. In the first case the limit is an integro-differential
equation and the memory term is described by a resolvent Volterra equation.
Existence and uniqueness for the solution of the effective equation are proved
by passing to a kinetic formulation. On the other side the Riccati equation re-
veals a phenomena of instantaneous memory, described throught an asymp-
totic approach that consists in looking for an expansion by introducing a suit-
able parameter.

1. - Introduction.

This paper is concerned with the homogenization of some ordinary
differential equations of linear and nonlinear type, involving highly os-
cillating coefficients, in which there is persistence of oscillations of the
solutions and memory effects appear.

Let T &#x3E; 0 be fixed, S~ be an open set of Rn and let a’(t, x ) be a se-
quence in L °° (( o , T) x Q), satisfying 0 ~ a _ ~ at: (t, x ) ~ a + a.e., con-

verging to a(t, x) in L °° ((0, T) x Q) weak*.

(*) Indirizzo dell’A.: Dipartimento di Matematica «V. Volterra», Universita di
Ancona, Via Brecce Bianche, Ancona (Italy).

E-mail: petrini@anvaxl.cineca.it
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We consider the following two equations:

where and f is a positive bounded function.
The interest in (1.1), (1.2) is motivated by the paper of L. Tartar [17],

in which, under the additional assumption of equicontinuity in t for the
sequence the effective behaviour of (1.1) is described by the use of
Volterra equations; moreover for both problems an asymptotic approach
is presented, that consists in looking for a power series expansion with
respect to a suitable parameter.

In particular, Tartar obtained that, up to a subsequence, the weak
limit u of solutions u e satisfies an integro-differential equation, with a
memory kernel:

where K( t , s , x ) is given by:

and D(t , s , x) is the solution of a Volterra equation involving the weak*
limits of and au ~ .

When aE(t, x ) = a( t , is periodic with respect to x , the homoge-
nization of equation (1.1) has been carried out by M. L. Mascarenhas
in [13], while for the problem (1.2), the case f = 0 with u ~ ( o, x) = uo (x) &#x3E;

&#x3E; 0 has been studied by Y. Amirat, K. Hamdache and A. Ziani in [7].
In the latter paper, the authors showed also that the Volterra kernel

K(t, s, x) related to (1.1) when a’ does not depend upon t is exactly the
one obtained by L. Tartar in [16] by the method of Nevanlinna-Pick
(see [15]).

Following the ideas of Tartar, we furnish here a characterization of
the memory terms appearing in (1.1) and (1.2), without assuming the
equicontinuity of the coefficients a E and using, when possible, the Young
measures associated to the oscillating sequences.

As for the homogenized problem related to (1.1), we obtain an equiva-
lent formulation of the kind in [6] which allows us to prove that the sol-
ution is unique, thus the whole sequence uE converges towards u.
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The two problems will reveal a very different behaviour from the
point of view of homogenization, the first one showing a non local memo-
ry effect, while in the latter one, the persistence of oscillations let appear
a memory of instantaneous response type.
We point out that the result found for equation (1.2) generalizes the

one of Y. Amirat-K. Hamdache-A. Ziani [7] concerning the case in which
the source term is zero and the initial condition is u ~ ( 0 , x ) _ ~co ( x ) &#x3E;
&#x3E;0.

The method exploited for (1.1) could be applied to the case of a linear
transport equation having time depending coefficients oscillating in a
transverse direction (shear flow) and will be the object of a next

paper.
We recall here that the homogenization of linear transport equations

with oscillatory velocity field having a shear structure and time inde-
pending has been treated in the papers [ 1 ], [2], [3]-[7], [10], [11], [14],
[16].

Aknowledgments. I would like to thank Kamel Hamdache for useful
conversations and helpful encouragement.

2. - A linear problem.

Let T &#x3E; 0 and let S~ be an open set of Rn . We consider the linear dif-
ferential equation:

where is a sequence of measurable functions that satisfies:

and uo(x) E L 00 (Q).
In order to characterize the equation satisfied by the weak* limit of

the solutions u £ , we study the equation with a parameter y :
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whose explicit solution is

We will do an analysis based on analyticity properties in the parameter
y , remarking that the previous problem corresponds to the case

y=1.
Let us define the function:

The bounds (2.2) imply that the sequence (h £ ( t , s , x ; y ) )~ c
cW~"((0, T ) x ( o , T); Loo(Q» is uniformly bounded with bounded
derivatives in t and s; moreover x ; /))~cW~’ °°((0, T);
L °° ((0, T) x Q)) and has a sequence of derivatives in s which is bounded
in L 00 ( 0, Dex(0, 

Thus we have

in L"((0, T) x ( 0 , T) x Q) weak*, where is the family of

Young measures associated to the sequence ( x) da), which has
support in = [0, 7’a + ]. s 

By denoting = [ a _ , a + ], we get:

LEMMA 2.0.1. Let ~2) dÀ) the famiLy of Young mea-
sures, parametrized in t, s, x, with support x associated
to the vector-vaLued sequence:

Then, after the extraction of a subsequence, we obtain that:

and
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Moreover, if v t, x (dÀ 1) is the family of Young measures associated to
the sequence x), we have that:

PROOF. Let d~ 2 , d£) be the Young measure associated

to the sequence I (see Tartar [15]).

Then clearly the weak* limits of h £, and are given as before.
Moreover (2.5) follows easily. -

If we denote n1t,s,x (dk1, dk), n2t, s, x(dk2, dk), n1,2t, s, x(dk1, dk2) the

Young measures associated to the sequences

, respectively, as for (2.5)

we have for exemple:

Let us define the function

which is bounded with bounded derivative in s , analytic in the parameter
y and admits an expansion:

where

In particular, by (2.5), s , x ) = 0 .
For a subsequence labelled we see that converges weakly to

u( t , x ; y ) = uo(x) h( t , 0 , x ; y), and u satisfies the equation:
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We can restate the result of Theorem 2.9 in Tartar [17] under the
only assumption (2.2) on the sequence a E :

THEOREM 2.1 (Tartar [17]). Under hypothesis (2.2) and after ex-

traction of a subsequence of 1 I and u’,

there is a kernel K defined on ( 0 , T) x ( 0 , T) x Q such that, for any y &#x3E;

&#x3E; 0 , the subsequence uë(t, x ; y ) of solutions of (2.3) converges weakly* to
the solution u(t , x ; y) of:

in (0, T) x Q with u(O, x; y) = uo(x) in Q.
The kernel K( t , s , x ; y) is measurable in t, x and analytic in y and

is given by:

where, for any y &#x3E; 0, D(t, s, x ; y) is the solution of the Volterra

equation:

in (0, T) x (0, T ) x Q, with C defined by (2.6).

PROOF. In order to show that the equation (2.8) can be written as in
(2.9) with a kernel K, we notice that it has the form

with the function g defined by

By considering (2.12), we have that g( t , x ; y ) solves the integral
equation:
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in which the kernel D is the solution of the resolvent equation
(2.11).

From (2.11) it follows that D is bounded and has bounded derivative
in s..

Moreover, noticing that the equality

holds in view of the unicity of the solution of an homogeneous Volterra
equation, we have:

in (0, T) X (o, 
Thus, after integration by parts in (2.13) and noticing that

D(t, t, x; y) = 0, we obtain:

in (0, T) x S2 , for any y &#x3E; 0, from which we get the formula (2.9) for the
kernel K.

The analyticity of K( t , s, x ; y) with respect to y comes from the
equation (2.10) in view of to the following Lemma:

LEMMA 2.2. The solution D(t, s, x ; y) of (2.11 ) is an analytic func-
tion which is represented by the expansion:

where
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and Dk is obtained by induction for l~ ; 3:

PROOF. We find (2.15) and (2.16) by injecting the expansion of

C( t , s , x ; y) into the Volterra equation and by observing that

( 1 ~y ) D( t , s , x ; y ) is bounded in y.
To show that we have indeed identified the solution D(t, s , x ; y), we

verify that the formal power series obtained has an infinite radius of
convergence.

Actually, from (2.7) we deduce for Ck :

This implies for D1 the bound:

When k &#x3E; 2 , we look for a bound of Dk of the form

Putting this bound into equation (2.16) implies the inequality:

that gives

To end the proof of Theorem 2.1, we notice that (2.15) yields
Do ( t , s , x ) = 0, so the function K( t , s , x ; y ) defined by formula (2.10) is
bounded in y .

In order to characterize the kernel K and let his structure more ex-
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plicit, we define on (0, T) x (0, T ) x ,S2 and for any y &#x3E; 0 the func-
tions :

REMARK 2.1. H(t, s , x ; y ) a,dm2ts an expansion:

where

By Lemma 2.0.1 we have

In particular, in view of (2.5),

by application of the Jensen inequality.

LEMMA 2.3. Under hypothesis of Theorem 2.1, the kernel

K(t, s, x ; y) solves the family of Volterra equations indexed by
t, s, x:

on ( 0 , T) x ( 0 , T) x Q and for any y &#x3E; 0 , with K( s , s , x ; y) =
= Ho(s, s, x). Moreover, K has the following expansion in y:
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where:

and Ki (t, s , x) is obtained by induction , for i ; 2 :

PROOF. Equation (2.20) corresponds to the (2.14) in the proof of The-
orem 2.1 and gives that K(t, s, x ; y ) is defined by:

where D is the solution of the Volterra equation (2.11).
The expansion (2.21) is found by putting into the equation (2.24) the

expansions of functions D and H.
The formal power series thus obtained has an infinite radius of con-

vergence, indeed :

and

with

It is now possible to give to the Cauchy problem (2.9) an equivalent
formulation, which will allow us to prove, by using the Volterra equations
theory, existence and uniqueness results for the homogenized problem
and in particular we will get that (2.9) is the effective equation associated
to the homogenization problem.

Let us consider the Banach spaces Xo = L 00 (Q), ~=W~((0, T);
L 00 (Q) ), y=L"((0, 

We introduce the auxiliary function z( t , x ; y) defined on (0, T ) x Q
and for any y &#x3E; 0 by
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THEOREM 2.2. Under hypothesis of Theorem 2.1, for any y &#x3E; 0 the

Cauchy problem (2.9) is equivalent to the following system:

in ( 0 , T) x Q, with the initial conditions ( u , z ) ( 0 , x ; y) = (uo(x), 0)
in Q.

If we assume

for any initial data in Xo x Xo, the system (2.27) admits a unique
solution (u, z) E X X Y and in particular (2.9) has a unique soLution
in X.

PROOF. Clearly if u satisfies (2.9) and (2.20) holds for K, then z de-
fined by (2.26) is in Y and (u, z) satisfies (2.27).

Now let (u, z ) be a solution of (2.27) in W~(0,r;L"(~))x
xL 00 (( 0 , T) x Q) with x ; y ) = 0 and let (2.20) hold.

t

Then the function v( t , x ; y) = s , x ; y) u( s , x ; y) ds , where
o

K( t , s, x ; y) is the solution of (2.20) belongs to Y and putting (2.20)
into the second equation in (2.27) gives

So (z - v)(t, x; y) solves the homogeneous integral equation

with the initial condition ( z - v)(0, x ; y) = 0, which, for any y &#x3E; 0
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admits only the solution zero in L °° ( ( o , T) x Q). Thus we get that
z(t, x ; y) is given by (2.26).

Let us now consider U(t, x) = (u(t, x), z(t, x) ) E Y x Y, Uo (x) 
x Xo and F(~;y)EZ~((0, 

By integrating the first equation with respect to time, we can write
the system (2.27) under the general form:

where R(t , s , x ; y) is the bounded operator acting in Y x Y represented
by

By (2.2) and the definition of C and H, we have that, for any y &#x3E; 0,

For any given Uo (x) EXO x Xo and F, (2.29) is an inhomogeneous inte-
gral equation in Y x Y depending on a parameter y &#x3E; 0.

Thus, by a generalization of the flxed point theorem, for any y &#x3E; 0 the

equation (2.29) has a unique solution, being a suitable power of the oper-
ator R a contraction in Y x Y.

Moreover the solution U( t , x ; y ) is given by

where S( t , s , x ; y) is the solution of the resolvent Volterra equation

corresponding to the initial data S( s , s , x ; y ) = R( s , s , x ; y).
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Thanks to hypothesis (2.28), for any y &#x3E; 0 the equation above has a
unique solution in L °° ((0, T)2 X Q)4 , explicitely given by

and G( t , s , x ; y ), H( t , s , x ; y ) are defined in (2.17), (2.18).
By integrating we obtain

where

For the equivalence previously seen, it follows that !7~W~°°((0, T);
L 00 (92)) x L °° ((0, T) x Q) is indeed a solution of (2.27).

We finally write the homogenized equation related to the problem
(2.1), obtained by taking y = 1:

THEOREM 2.3. Under hypotheses (2.2) and (2.28), there is a kernel
K( t , s , x ) defined in (0, T) x ( o , T) x Q such that the whole sequence

x ) of solutions of (2.1 ) converges weakly to the unique solution
u(t, x) of

with x ) in Q.
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then K( t , s , x ) is the solution of the Volterra equation:

and the problem (2.1) is equivalent to the system:

in (0, T) with the initial conditions u( o , x ) = uo ( x ), z( o , x ) = 0
in Q.

PROOF. By integration in time, the system is equivalent to the inte-
gral one in Theorem 2.5, for which existence and uniqueness results
hold.

Let us now assume that the coefficients a ~ (t, x) are absolutely con-
tinuous in time and satisfy

In this case, we can make use of the Young measure associated to the

sequence

LEMMA 2.4. Let dÀ1, dÀ2, dA) the family of Young mea-
sures indexed by t, s and x, with in ll x A x A x A T, associat-
ed to the vector-valued sequence:

Then, for any y &#x3E; 0 , the functions C( t , s , x ; y) and H( t , s , x ; y) defined
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by (2.6) and (2.18) can be written as:

Moreover, their derivative in t is bounded, and write respectively:

at K( t , s , x ; y) is also bounded and is defined by the equation:

Thus, we find that by using the auxiliary function z( t , x ; y ) defined in
(2.26), the Cauchy problem (2.9) can be formulated as an equivalent sys-
tem in which a derivative in time is allowed on z :

THEOREM 2.4. Under hypotheses (2.28) and (2.34), for any y &#x3E; 0 the

problem (2.9) is equivalent to the following system:



148

in (0, T) x Q, with the initial conditions u( 0, x ; y) = uo ( x ),
x ; y) = 0 in Q and Ho ( t , t , x ) given by (2.19).

Under the assumption Ho ( t , t, x ) &#x3E; 0 a. e. in (0, T) x Q, we have
that for any initial data in Xo x Xo , the system (2.38) has a unique sol-
ution in W 1 ~ °° (o , T ; L 00 ( S~ ) ) x W 1 ~ °° (o , T ; L °° (Q)).

PROOF. Let Xo, X, Y be the Banach spaces defined in the proof of
Theorem 2.2.

Clearly if u satisfies (2.9) and (2.37) holds, then 

E W 1 ~ °° (o , T ; L 00 (Q» and (u , z ) satisfies (2.38).
Now let (u , z) be a solution of (2.38) in X x X with z(0 , x ) = 0 and

let us take the function

In view of (2.37) we have v E X and

Putting (2.37) into the second equation in (2.38) gives

so ( z - v)(t, x ; y) solves the homogeneous integral equation

with the initial condition ( z - v ) ( o , x ; y) = 0, which admits only the sol-
ution zero in L °° ((0, T ) x Q), for any y &#x3E; 0 .

Thus we get that z( t , x ; y) is given by (2.26).
Let now x Xo, F(t, x; y) E=- L 1 ((0, T) x Q). By integration in

time, the system is equivalent to the one in (2.29) for which existence and
uniqueness results hold in X x Y.

Moreover, thanks to (2.34) we have that the resolvent kernel

R( t , s , x ; y ) is absolutely continuous in t , thus the general system corre-
sponding to (2.38) writes
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where

and

Clearly, the solution S(t, s , x ; y) inherits the same property of absolute
continuity in t , from which it follows that U obtained in (2.31) is in
xxx. 0

3. - A non linear problem.

Let T &#x3E; 0 and S~ be an open set of Rn . We consider the following
model equation:

We assume that the coefficients a £ and the function f are measurable and
satisfy:

for some a -, a + , F_ , F+ .
Existence of solution u £ then comes from Carath6odory theory

(see [12]). Moreover, hypotheses (4.2) and (4.3) imply that
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for all t ; 0 and for a.e. x E Q. Unicity of is assured by a comparison
result (see [12]).

For each f one can extract a subsequence such that u ~ converges
weakly to a function u in W 1 ~ °° (o , T ; L OO(Q».

Here we look for a characterization of the homogenized equation sat-
isfied by u .

We will see that the homogenization process produces a phenomena
with memory of instantaneous response type, where the memory term
will depend on f . The same behaviour has been found by Amirat, Ham-
dache, Ziani in [7] in the case f = 0, with an initial condition u ~ ( o , x ) =
= uo (x) &#x3E; 0 .

The problem (3.1) has been considered by Tartar in [17], where the
approach of introducing a suitable parameter is presented.

Thus we consider firstly the problem:

and do an expansion in the parameter y.
We look for an expansion:

where the first term Uo is independent of e and is a solution of:

The following terms can be computed by induction, the terms Ui and U2
being solutions of:
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and the general term Uk , for k ~ 3 , satisfying:

We point out that 0  Uo ( t , x ) ~ F + t for all t E (0, T ] .
From (3.7) and (3.8) we deduce the explicit expression of Uf, 

We have:

PROPOSITION 3.1. For 1~ ; 2 , Uk satisfies the equation:

PROOF. For k = 2 we have

Let us assume (3.12) true for any index lower than k; then for Uk we find
that:
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and by replacing the expression of = 1, ... , k - 2 given by
the induction, we get:

The terms in 1 jU6 are:

By still replacing the expression of given by the induction, we
get (3.12).

REMARK 3.2. From (3.12) one can see that each U~ can be ex-

pressed by powers of Ul.

In order to settle the convergence of the expansion x ; y), we do
firstly some considerations on the coefficients Uk.

We can write, for any 1~ ~ 1,
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where Vk verifies:

Thus

where

LEMMA 3.0.1. Assume that

Then:

(i) the expansion (3.16) converges in ( 0 , T) x Q for any y E [ 0 , 1 ]
and the function UY = Uo ( 1 + Vy ) coincides with the solution

u E ( t , x ; y ) of problem (3.5);
(ii) moreover, the function VY satisfies

uniformly in t, x and for any y E [ 0, 1 ].

PROOF. Let
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be the solution of the Cauchy problem:

Under the bound (3.17), admits a power series expansion:

converging for any y E [ o , 1 ]. 
’ ’

From (3.13), (3.14) and (3.15), one can deduce that for I~ ~ 1

for all t E [0, T], uniformly in x E S~ .
This assures the convergence of the expansion VY .
Moreover:

when ya + F + t2  1. 

As a consequence, this yields a powers expansion for the function
1/UEy:

convergent for any y e [0, 1 J if (3.17) holds.
To look for the effective equation related to (3.5), we will exploit the

result of Proposition 3.1.
Thanks to formula (3.12), we have:
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We deduce that:

By passing to the limit in L 
°° weak* and by denoting x) the

weak* limit of r) ), we get:

We can now state the main result of this section

THEOREM 3.1. Under hypotheses (3.2), (3.3) and (3.17), for any
y E [ 0, 1 ] there is a subsequence, still denoted by (u’), and a function

x ) EL 00 (( o , T) x Q) such that the sequence converges in

W 1 ~ °° (o , T;LOO(Q» weak* to the unique solution u of the problem:

The function K is given by:

PROOF. Let
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By making use of the relation (3.20) we get:

We can display the expansion x). For this we rewrite the for-
mula in Proposition 3.1 in terms of Vk :

Then, by writing Vk(t, x) and Vk, 1 (t, x) the weak* limits of functions
Vk(t, x) and

we have:

COROLLARY 3.1.1. For each y e [0, 1 ] the function Ky admits a
convergent expansion of the form:

where:
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PROOF. From (3.22), (3.19) and (3.23), we deduce:

where, 2 :

By replacing this expression and by a change of index into the sum, we
obtain (4.24).

REMARK 3.1.1. We can use the parametrized measure obtained by
Amirat-Hamdache-Ziani in [3] throught the Nevanlinna-Pick method
to express the kernel K

To this end we consider the Young measure Jlt,x(dÀ) originated by
the oscillating sequence VY , y = 1:

Then:
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We have the following relation with the measure of Nevanlinna-Pick
co t, , (dA) founded in [3]:

and

in view of the Jensen inequality.
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