@article{RSMUP_1998__100__81_0, author = {Kinoshita, Tamotu}, title = {On the wellposedness in the {Gevrey} classes of the {Cauchy} problem for weakly hyperbolic equations whose coefficients are {H\"older} continuous in $t$ and degenerate in $t = T$}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {81--96}, publisher = {Seminario Matematico of the University of Padua}, volume = {100}, year = {1998}, mrnumber = {1675255}, zbl = {0927.35055}, language = {en}, url = {http://www.numdam.org/item/RSMUP_1998__100__81_0/} }
TY - JOUR AU - Kinoshita, Tamotu TI - On the wellposedness in the Gevrey classes of the Cauchy problem for weakly hyperbolic equations whose coefficients are Hölder continuous in $t$ and degenerate in $t = T$ JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1998 SP - 81 EP - 96 VL - 100 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_1998__100__81_0/ LA - en ID - RSMUP_1998__100__81_0 ER -
%0 Journal Article %A Kinoshita, Tamotu %T On the wellposedness in the Gevrey classes of the Cauchy problem for weakly hyperbolic equations whose coefficients are Hölder continuous in $t$ and degenerate in $t = T$ %J Rendiconti del Seminario Matematico della Università di Padova %D 1998 %P 81-96 %V 100 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_1998__100__81_0/ %G en %F RSMUP_1998__100__81_0
Kinoshita, Tamotu. On the wellposedness in the Gevrey classes of the Cauchy problem for weakly hyperbolic equations whose coefficients are Hölder continuous in $t$ and degenerate in $t = T$. Rendiconti del Seminario Matematico della Università di Padova, Tome 100 (1998), pp. 81-96. http://www.numdam.org/item/RSMUP_1998__100__81_0/
[1] On the strictly hyperbolic equations which are Hölder continuous with respect to time, preprint. | MR | Zbl
,[2] Sur les equations hyperboliques avec des coefficients qui ne d6pendent que du temps, Ann. Scuola Norm. Sup. Pisa, 6 (1979), pp. 511-559. | Numdam | MR | Zbl
- - ,[3] Wellposedness in the Gevrey classes of the Cauchy problem for a non strictly hyperbolic equation with coefficients depending on time, Ann. Scuola Norm. Sup. Pisa, 10 (1983), pp. 291-312. | Numdam | MR | Zbl
- - ,[4] Gevrey well posedness of an abstract Cauchy problem of weakly hyperbolic type, Publ. RIMS Kyoto Univ., 24 (1988), pp. 433-449. | MR | Zbl
,[5] Local existence for semilinear weakly hyperbolic equations with time dependent coefficients, Nonlinear Analysis. Theory, Methods and Applications, Vol 21, No. 9 (1993), pp. 685-696. | MR | Zbl
,[6] IVRII, Cauchy problem conditions for hyperbolic operators with characteristics of variable multiplicity for Gevrey classes, Siberian. Math., 17 (1976), pp. 921-931. | Zbl
[7] The well posed Cauchy problem for hyperbolic operators, Exposé au Séminaire de Vaillant du 8 février (1989).
,[8] On the wellposedness in the Gevrey classes of the Cauchy problem for weakly hyperbolic systems with Hölder continuous coefficients in t, preprint. | Zbl
,[9] Levi conditions and global Gevrey regularity for the solutions of quasilinear weakly hyperbolic equations, Mathematische Nachrichten, 178 (1996), pp. 285-307. | MR | Zbl
- ,[10] Sur les équations hyperboliues à coefficients hölderiens en t et de classes de Gevrey en x, Bull. Sci. Math., 107 (1983), pp. 739-773. | MR | Zbl
,[11] On the Cauchy problem for a hyperbolic equation of second order, Doctoral thesis (1994).
,