On the wellposedness in the Gevrey classes of the Cauchy problem for weakly hyperbolic equations whose coefficients are Hölder continuous in t and degenerate in t=T
Rendiconti del Seminario Matematico della Università di Padova, Tome 100 (1998), pp. 81-96.
@article{RSMUP_1998__100__81_0,
     author = {Kinoshita, Tamotu},
     title = {On the wellposedness in the {Gevrey} classes of the {Cauchy} problem for weakly hyperbolic equations whose coefficients are {H\"older} continuous in $t$ and degenerate in $t = T$},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {81--96},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {100},
     year = {1998},
     mrnumber = {1675255},
     zbl = {0927.35055},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_1998__100__81_0/}
}
TY  - JOUR
AU  - Kinoshita, Tamotu
TI  - On the wellposedness in the Gevrey classes of the Cauchy problem for weakly hyperbolic equations whose coefficients are Hölder continuous in $t$ and degenerate in $t = T$
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1998
SP  - 81
EP  - 96
VL  - 100
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_1998__100__81_0/
LA  - en
ID  - RSMUP_1998__100__81_0
ER  - 
%0 Journal Article
%A Kinoshita, Tamotu
%T On the wellposedness in the Gevrey classes of the Cauchy problem for weakly hyperbolic equations whose coefficients are Hölder continuous in $t$ and degenerate in $t = T$
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1998
%P 81-96
%V 100
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_1998__100__81_0/
%G en
%F RSMUP_1998__100__81_0
Kinoshita, Tamotu. On the wellposedness in the Gevrey classes of the Cauchy problem for weakly hyperbolic equations whose coefficients are Hölder continuous in $t$ and degenerate in $t = T$. Rendiconti del Seminario Matematico della Università di Padova, Tome 100 (1998), pp. 81-96. http://www.numdam.org/item/RSMUP_1998__100__81_0/

[1] M. Cicognani, On the strictly hyperbolic equations which are Hölder continuous with respect to time, preprint. | MR | Zbl

[2] F. Colombini - E. De Giorgi - S. Spagnolo, Sur les equations hyperboliques avec des coefficients qui ne d6pendent que du temps, Ann. Scuola Norm. Sup. Pisa, 6 (1979), pp. 511-559. | Numdam | MR | Zbl

[3] F. Colombini - E. Jannelli - S. Spagnolo, Wellposedness in the Gevrey classes of the Cauchy problem for a non strictly hyperbolic equation with coefficients depending on time, Ann. Scuola Norm. Sup. Pisa, 10 (1983), pp. 291-312. | Numdam | MR | Zbl

[4] P. D'Ancona, Gevrey well posedness of an abstract Cauchy problem of weakly hyperbolic type, Publ. RIMS Kyoto Univ., 24 (1988), pp. 433-449. | MR | Zbl

[5] P. D'Ancona, Local existence for semilinear weakly hyperbolic equations with time dependent coefficients, Nonlinear Analysis. Theory, Methods and Applications, Vol 21, No. 9 (1993), pp. 685-696. | MR | Zbl

[6] V. Ya. IVRII, Cauchy problem conditions for hyperbolic operators with characteristics of variable multiplicity for Gevrey classes, Siberian. Math., 17 (1976), pp. 921-931. | Zbl

[7] K. Kajitani, The well posed Cauchy problem for hyperbolic operators, Exposé au Séminaire de Vaillant du 8 février (1989).

[8] T. Kinoshita, On the wellposedness in the Gevrey classes of the Cauchy problem for weakly hyperbolic systems with Hölder continuous coefficients in t, preprint. | Zbl

[9] M. Reissig - K. Yagdjian, Levi conditions and global Gevrey regularity for the solutions of quasilinear weakly hyperbolic equations, Mathematische Nachrichten, 178 (1996), pp. 285-307. | MR | Zbl

[10] T. Nishitani, Sur les équations hyperboliues à coefficients hölderiens en t et de classes de Gevrey en x, Bull. Sci. Math., 107 (1983), pp. 739-773. | MR | Zbl

[11] H. Odai, On the Cauchy problem for a hyperbolic equation of second order, Doctoral thesis (1994).