@article{RSMUP_1998__100__187_0, author = {Kappe, Luise-Charlotte and Tomkinson, M. J.}, title = {Some conditions implying that an infinite group is abelian}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {187--209}, publisher = {Seminario Matematico of the University of Padua}, volume = {100}, year = {1998}, mrnumber = {1675275}, zbl = {0929.20026}, language = {en}, url = {http://www.numdam.org/item/RSMUP_1998__100__187_0/} }
TY - JOUR AU - Kappe, Luise-Charlotte AU - Tomkinson, M. J. TI - Some conditions implying that an infinite group is abelian JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1998 SP - 187 EP - 209 VL - 100 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_1998__100__187_0/ LA - en ID - RSMUP_1998__100__187_0 ER -
%0 Journal Article %A Kappe, Luise-Charlotte %A Tomkinson, M. J. %T Some conditions implying that an infinite group is abelian %J Rendiconti del Seminario Matematico della Università di Padova %D 1998 %P 187-209 %V 100 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_1998__100__187_0/ %G en %F RSMUP_1998__100__187_0
Kappe, Luise-Charlotte; Tomkinson, M. J. Some conditions implying that an infinite group is abelian. Rendiconti del Seminario Matematico della Università di Padova, Tome 100 (1998), pp. 187-209. http://www.numdam.org/item/RSMUP_1998__100__187_0/
[1] Finitely generated soluble groups with a condition on infinite subsets, Istit. Lombardo Accad. Sci. Lett. Rend. A, 128 (1994), pp. 201-208. | MR | Zbl
,[2] R. LAVER - R. McKENZIE, Coverings of groups by abelian subgroups, Canad. J. Math., 30 (1978), pp. 933-945. | MR | Zbl
-[3] A conjecture of Lennox and Wiegold concerning supersolvable groups, J. Austral. Math. Soc., 31 (1981), pp. 459-463. | MR | Zbl
,[4] Some group-laws equivalent to the commutative law, Arch. Math., 17 (1966), pp. 97-102. | MR | Zbl
,[5] The Theory of Groups, The Macmillan Company, New York (1959). | MR | Zbl
,[6] M. J. TOMKINSON, ,Some conditions impLying that a group is abelian, Algebra Colloquium, 3 (1996), pp. 199-212. | MR | Zbl
-[7] B. A. F. WEHRFRITZ, Locally Finite Groups, North-Holland, Amsterdam (1973). | MR | Zbl
-[8] A characterization of infinite metabelian groups, Houston J. Math., 17 (1991), pp. 429-437. | MR | Zbl
- - ,[9] M. MAJ, Finitely generated soluble groups with an Engel condition on infinite subsets, Rend. Sem. Mat. Univ. Padova, 89.(1993), pp. 97-102. | Numdam | MR | Zbl
-[10] M. MAJ, A finiteness condition concerning commutators in groups, Houston J. Math., 19 (1993), pp. 505-512. | MR | Zbl
-[11] M. MAJ - A. H. RHEMTULLA, Infinite groups in a given variety and Ramsey's theorem, Comm. Algebra, 20 (1992), pp. 127-139. | MR | Zbl
-[12] J. WIEGOLD, Extensions of a problem of Paul Erdös on groups, J. Austral. Math. Soc., 31 (1981), pp. 459-463. | MR | Zbl
-[13] A probLem of Paul Erdös on groups, J. Austral. Math. Soc., 21 (1976), pp. 467-472. | MR | Zbl
,[14] A combinatorial property of certain infinite groups, Comm. Algebra, 22 (1994), pp. 1457-1465. | MR | Zbl
- ,[15] A Course in the Theory of Groups, Springer-Verlag, New York, Berlin, Heidelberg (1982). | MR | Zbl
,[16] A property of the variety of 2-Engel groups, Rend. Sem. Mat. Univ. Padova, 91 (1994), pp. 225-228. | Numdam | MR | Zbl
,[17] FC-Groups, Pitman, Boston, London, Melbourne (1973). | Zbl
,