@article{RSMUP_1997__97__211_0, author = {Tabata, Minoru and Eshima, Nobuoki}, title = {The spectrum of the transport operator with a potential term under the spatial periodicity condition}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {211--233}, publisher = {Seminario Matematico of the University of Padua}, volume = {97}, year = {1997}, mrnumber = {1476172}, zbl = {0887.45004}, language = {en}, url = {http://www.numdam.org/item/RSMUP_1997__97__211_0/} }
TY - JOUR AU - Tabata, Minoru AU - Eshima, Nobuoki TI - The spectrum of the transport operator with a potential term under the spatial periodicity condition JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1997 SP - 211 EP - 233 VL - 97 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_1997__97__211_0/ LA - en ID - RSMUP_1997__97__211_0 ER -
%0 Journal Article %A Tabata, Minoru %A Eshima, Nobuoki %T The spectrum of the transport operator with a potential term under the spatial periodicity condition %J Rendiconti del Seminario Matematico della Università di Padova %D 1997 %P 211-233 %V 97 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_1997__97__211_0/ %G en %F RSMUP_1997__97__211_0
Tabata, Minoru; Eshima, Nobuoki. The spectrum of the transport operator with a potential term under the spatial periodicity condition. Rendiconti del Seminario Matematico della Università di Padova, Tome 97 (1997), pp. 211-233. http://www.numdam.org/item/RSMUP_1997__97__211_0/
[1] V. PROTOPOPESCU, Abstract time-dependent transport equations, J. Math. Anal. Appl., 121 (1987), pp. 370-405. | MR | Zbl
-[2] Existence and uniqueness of the solution of the nonstationary Boltzmann equation for the electrons in a collision dominated plasma by means of operator semigroup, Ann. Phys., 38 (1981), pp. 211-220. | MR
- ,[3] M. LACHOWICZ - A. PALCZEWSKI - G. TOSCANI, On the initial value problem for the Boltzmann equation with a force term, Transp. Theory Stat. Phys., 18 (1989), pp. 87-102. | MR | Zbl
-[4] On the Boltzmann equation with external forces, SIAM J. Appl. Math., 34 (1978), pp. 577-592. | MR | Zbl
,[5] Asymptotic theory of the Boltzmann equation, II, in Rarefied Gas Dynamics (J. A. LAURMANN Ed.), Academic Press, New York (1963), pp. 26-59. | MR
,[6] On the nonlinear Boltzmann equation with force term, Transp. Theory and Stat. Phys., 14 (1985), pp. 291-322. | MR | Zbl
,[7] Global solutions to a mixed problem for the Boltzmann equation with Lorentz force term, Transp. Theory Stat. Phys., 15 (1986), pp. 529-549. | MR | Zbl
,[8] Perturbation Theory for Linear Operators, Springer, New York (1976). | MR | Zbl
,[9] Existence, uniqueness and properties of the solutions of the Boltzmann kinetic equation for a weakly ionized gas, I, J. Math. Phys., 18 (1977), pp. 984-996. | MR | Zbl
,[10] A time dependent linear Boltzmann operator as the generator of a semigroup, Bull. Acad. Polon. Sci. Ser. Sci. Tech., 25 (1977), pp. 233-237. | MR | Zbl
,[11] Spectral properties of the space nonhomogeneous linearized Boltzmann operator, Transp. Theory Stat. Phys., 13 (1984), pp. 409-430. | MR | Zbl
,[12] Methods of Mathematical Physics, Vol. I, Functional Analysis, Academic Press, New York (1980). | MR | Zbl
- ,[13] Methods of Mathematical Physics, Vol. IV, Analysis of Operators, Academic Press, New York (1978). | MR | Zbl
- ,[14] Decay of solutions to the mixed problem with the periodicity boundary condition for the linearized Boltzmann equation with conservative external force, Comm. Partial Differential Equations, 18 (1993), pp. 1823-1846. | MR | Zbl
,[15] Decay of solutions to the Cauchy problem for the linearized Boltzmann equation with an unbounded external-force potential, Transp. Theory Stat. Phys., 23 (1994), pp. 741-780. | MR | Zbl
,[16] Introduction to Transport Theory, J. Wiley and Sons, New York (1962). | MR
[17] Stability and exponential convergence for the Boltzmann equation, Doctoral Thesis. Göteborg University.
,