@article{RSMUP_1997__97__193_0, author = {Matzeu, M. and Girardi, M.}, title = {On periodic solutions of a class of second order nonautonomous systems with nonhomogeneous potentials indefinite in sign}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {193--210}, publisher = {Seminario Matematico of the University of Padua}, volume = {97}, year = {1997}, mrnumber = {1476171}, zbl = {0891.34050}, language = {en}, url = {http://www.numdam.org/item/RSMUP_1997__97__193_0/} }
TY - JOUR AU - Matzeu, M. AU - Girardi, M. TI - On periodic solutions of a class of second order nonautonomous systems with nonhomogeneous potentials indefinite in sign JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1997 SP - 193 EP - 210 VL - 97 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_1997__97__193_0/ LA - en ID - RSMUP_1997__97__193_0 ER -
%0 Journal Article %A Matzeu, M. %A Girardi, M. %T On periodic solutions of a class of second order nonautonomous systems with nonhomogeneous potentials indefinite in sign %J Rendiconti del Seminario Matematico della Università di Padova %D 1997 %P 193-210 %V 97 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_1997__97__193_0/ %G en %F RSMUP_1997__97__193_0
Matzeu, M.; Girardi, M. On periodic solutions of a class of second order nonautonomous systems with nonhomogeneous potentials indefinite in sign. Rendiconti del Seminario Matematico della Università di Padova, Tome 97 (1997), pp. 193-210. http://www.numdam.org/item/RSMUP_1997__97__193_0/
[1] Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), pp. 349-381. | MR | Zbl
- ,[2] Periodic and homoclinic solutions to a class of Hamiltonian systems with indefinite potential in sign, to appear on Boll. Un. Mat. Ital. | MR | Zbl
,[3] Existence of periodic solutions of Hamiltonian systems with potential indefinite in sign, to appear on Nonlinear Analysis. | MR | Zbl
,[4] Existence and multiplicity results for homogeneous second order differential equations, to appear on J. Diff. E q. | MR | Zbl
- - ,[5] Analyse fonctionelle: théorie et applications, Masson (1983). | MR | Zbl
,[6] MONTECCHIARI, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potential, Comm. Appl. Nonlinear Anal., 1 (1994), pp. 97-129. | MR | Zbl
- P.[7] Periodic and homoclinic solutions to a class of Hamiltonian systems with the potential changing sign, Dynamical Syst. Appl., 2 (1993), pp. 131-145. | MR | Zbl
- ,[8] Convexity Methods in Hamiltonian Mechanics, Springer-Verlag (1990). | MR | Zbl
,[9] H. HOFER, Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems, Inv. Math., 81 (1985), pp. 155-188. | EuDML | MR | Zbl
-[10] Existence and multiciplity results for periodic solutions of superquadratic Hamiltonian systems where the potential changes sign, Nonlinear Diff. Eq. and Appl., 2 (1995), pp. 35-61. | MR | Zbl
- ,[11] Periodic solutions of second order nonautonomous systems with the potential changing sign, Rend. Mat. Acc. Lincei, s. 9, v. 4 (1993), pp. 273-277. | MR | Zbl
- ,[12] A geometric description of the neighbourhood of a critical point given by the mountain-pass theorem, J. London Math. Soc. (2), 31 (1985), pp. 566-570. | MR | Zbl
,[13] Solutions periodiques d'un systeme differential non lineaire du second ordre avec changement de sign, Ann. Math. Pura Appl., 156 (1990), pp. 76-111. | MR | Zbl
,[14] Periodic solutions of a second order superquadratic system with change of sign of the potential, J. Diff. Eq., 93 (1991), 1-18. | MR | Zbl
,