On periodic solutions of a class of second order nonautonomous systems with nonhomogeneous potentials indefinite in sign
Rendiconti del Seminario Matematico della Università di Padova, Tome 97 (1997), pp. 193-210.
@article{RSMUP_1997__97__193_0,
     author = {Matzeu, M. and Girardi, M.},
     title = {On periodic solutions of a class of second order nonautonomous systems with nonhomogeneous potentials indefinite in sign},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {193--210},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {97},
     year = {1997},
     mrnumber = {1476171},
     zbl = {0891.34050},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_1997__97__193_0/}
}
TY  - JOUR
AU  - Matzeu, M.
AU  - Girardi, M.
TI  - On periodic solutions of a class of second order nonautonomous systems with nonhomogeneous potentials indefinite in sign
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1997
SP  - 193
EP  - 210
VL  - 97
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_1997__97__193_0/
LA  - en
ID  - RSMUP_1997__97__193_0
ER  - 
%0 Journal Article
%A Matzeu, M.
%A Girardi, M.
%T On periodic solutions of a class of second order nonautonomous systems with nonhomogeneous potentials indefinite in sign
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1997
%P 193-210
%V 97
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_1997__97__193_0/
%G en
%F RSMUP_1997__97__193_0
Matzeu, M.; Girardi, M. On periodic solutions of a class of second order nonautonomous systems with nonhomogeneous potentials indefinite in sign. Rendiconti del Seminario Matematico della Università di Padova, Tome 97 (1997), pp. 193-210. http://www.numdam.org/item/RSMUP_1997__97__193_0/

[1] A. Ambrosetti - P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), pp. 349-381. | MR | Zbl

[2] F. Antonacci, Periodic and homoclinic solutions to a class of Hamiltonian systems with indefinite potential in sign, to appear on Boll. Un. Mat. Ital. | MR | Zbl

[3] F. Antonacci, Existence of periodic solutions of Hamiltonian systems with potential indefinite in sign, to appear on Nonlinear Analysis. | MR | Zbl

[4] A.K. Ben Naoum - C. Troestler - M. Willem, Existence and multiplicity results for homogeneous second order differential equations, to appear on J. Diff. E q. | MR | Zbl

[5] H. Brezis, Analyse fonctionelle: théorie et applications, Masson (1983). | MR | Zbl

[6] P. Caldiroli - P. MONTECCHIARI, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potential, Comm. Appl. Nonlinear Anal., 1 (1994), pp. 97-129. | MR | Zbl

[7] Y.H. Ding - M. Girardi, Periodic and homoclinic solutions to a class of Hamiltonian systems with the potential changing sign, Dynamical Syst. Appl., 2 (1993), pp. 131-145. | MR | Zbl

[8] I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Springer-Verlag (1990). | MR | Zbl

[9] I. Ekeland - H. HOFER, Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems, Inv. Math., 81 (1985), pp. 155-188. | EuDML | MR | Zbl

[10] M. Girardi - M. Matzeu, Existence and multiciplity results for periodic solutions of superquadratic Hamiltonian systems where the potential changes sign, Nonlinear Diff. Eq. and Appl., 2 (1995), pp. 35-61. | MR | Zbl

[11] M. Girardi - M. Matzeu, Periodic solutions of second order nonautonomous systems with the potential changing sign, Rend. Mat. Acc. Lincei, s. 9, v. 4 (1993), pp. 273-277. | MR | Zbl

[12] H. Hofer, A geometric description of the neighbourhood of a critical point given by the mountain-pass theorem, J. London Math. Soc. (2), 31 (1985), pp. 566-570. | MR | Zbl

[13] L. Lassoued, Solutions periodiques d'un systeme differential non lineaire du second ordre avec changement de sign, Ann. Math. Pura Appl., 156 (1990), pp. 76-111. | MR | Zbl

[14] L. Lassoued, Periodic solutions of a second order superquadratic system with change of sign of the potential, J. Diff. Eq., 93 (1991), 1-18. | MR | Zbl