@article{RSMUP_1996__96__15_0, author = {Twardowska, Krystyna}, title = {An approximation theorem of {Wong-Zakai} type for stochastic {Navier-Stokes} equations}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {15--36}, publisher = {Seminario Matematico of the University of Padua}, volume = {96}, year = {1996}, mrnumber = {1438286}, zbl = {0882.35140}, language = {en}, url = {http://www.numdam.org/item/RSMUP_1996__96__15_0/} }
TY - JOUR AU - Twardowska, Krystyna TI - An approximation theorem of Wong-Zakai type for stochastic Navier-Stokes equations JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1996 SP - 15 EP - 36 VL - 96 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_1996__96__15_0/ LA - en ID - RSMUP_1996__96__15_0 ER -
%0 Journal Article %A Twardowska, Krystyna %T An approximation theorem of Wong-Zakai type for stochastic Navier-Stokes equations %J Rendiconti del Seminario Matematico della Università di Padova %D 1996 %P 15-36 %V 96 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_1996__96__15_0/ %G en %F RSMUP_1996__96__15_0
Twardowska, Krystyna. An approximation theorem of Wong-Zakai type for stochastic Navier-Stokes equations. Rendiconti del Seminario Matematico della Università di Padova, Tome 96 (1996), pp. 15-36. http://www.numdam.org/item/RSMUP_1996__96__15_0/
[1] An approach to Itô linear equations in Hilbert spaces by approximation of white noise with coloured noise, Stochastic Anal. Appl., 2 (1984), pp. 131-186. | MR | Zbl
- ,[2] A model of stochastic differential equation in Hilbert space applicable to Navier-Stokes equation in dimension 2, in: Stochastic Analysis, Liber Amicorum for Moshe Zakai, E ds. E. Mayer-Wolf, E. Merzbach and A. Schwartz, Academic Press (1991), pp. 51-73. | MR | Zbl
,[3] R. TEMAM, Equations stochastiques du type Navier-Stokes, J. Functional Analysis, 13 (1973), pp. 195-222. | MR | Zbl
-[4] Stochastic Navier-Stokes equations with multiplicative noise, Stochastic Anal. Appl., 10, 5 (1992), pp. 523-532. | MR | Zbl
- - ,[5] A convergence result for stochastic partial differential equations, Stochastics, 24 (1988), pp. 423-445. | MR | Zbl
- - ,[6] A note on uniqueness of stochastic Navier-Stokes equations, Universitatis Iagellonicae Acta Math., 30 (1993), pp. 219-228. | MR | Zbl
,[7] Stochastic Navier-Stokes equations, Acta Applicandae Math., 25 (1991), pp. 59-85. | MR | Zbl
- ,[8] Infinite Dimensional Linear System Theory, Springer, Berlin (1978). | MR | Zbl
- ,[9] Liens entre équations différentielles stochastiques et ordinaires, Ann. Inst. H. Poincaré, 13, 2 (1977), pp. 99-125. | EuDML | Numdam | MR | Zbl
,[10] Equations de Navier-Stokes stochastiques non homogénes et applications, Scuola Normale Superiore, Pisa (1992). | Zbl
,[11] On stochastic equations with respect to semimartingales III, Stochastics, 7 (1982), pp. 231-254. | MR | Zbl
,[12] The stability of stochastic partial differential equations and applications. Theorems on supports, Lecture Notes in Math., 1390, Springer, Berlin (1989), pp. 91-118. | MR | Zbl
,[13] S. WATANABE, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam (1981). | MR | Zbl
-[14] On stochastic evolution equations, Itogi Nauki i Techniki, Teor. Verojatn. Moscow, 14 (1979). pp. 71-146 (in Russian). | MR | Zbl
- ,[15] Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris (1969). | MR
,[16] E. MAGENES, Non-Homogeneous Boundary Value Problems and Applications, Springer, Berlin (1972). | Zbl
-[17] On the support of a solution of stochastic differential equation, Lietuvos Matematikos Rinkinys, 26, 1 (1986), pp. 91-98. | MR | Zbl
,[18] Approximation theorem of stochastic differential equations, Proc. Internat. Sympos. SDE Kyoto 1976, Tokyo (1978), pp. 283-296. | MR | Zbl
- ,[19] Equations aux dérivées partielles stochastiques non linéaires monotones. Etude de solutions fortes de type Itô, Thèse Doct. Sci. Math. Univ. Paris Sud (1975).
,[20] Measure attractors of the stochastic Navier-Stokes equations, University Bremen, Report Nr. 258, Bremen (1991). | MR
,[21] Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer, Berlin (1988). | MR | Zbl
,[22] Navier-Stokes Equations, North-Holland, Amsterdam (1977). | MR | Zbl
,[23] An approximation theorem of Wong-Zakai type for nonlinear stochastic partial differential equations, Stochastic Anal. Appl., 13, 5 (1995), pp. 601-626. | MR | Zbl
,[24] An extension of the Wong-Zakai theorem for stochastic evolution equations in Hilbert spaces, Stochastic Anal. Appl., 10, 4 (1992), pp. 471-500. | MR | Zbl
,[25] Approximation theorems of Wong-Zakai type for stochastic differential equations in infinite dimensions, Dissertationes Math., 325 (1993), pp. 1-54. | MR | Zbl
,[26] Mathematical Problems of Statistical Hydromechanics, Kluwer, Dordrecht (1988).
- ,[27] On the convergence of ordinary integrals to stochastic integrals, Ann. Math. Statist., 36 (1965), pp. 1560-1564. | MR | Zbl
- ,