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Regular Time-Optimal Syntheses
for Smooth Planar Systems.

BENEDETTO PICCOLI (*)

ABSTRACT - The paper is concerned with the time optimal stabilizing problem for
the control system

We show that under generic assumptions on F, G in there exists a regular
synthesis and all time-optimal trajectories are concatenations of a finite num-
ber of smooth arcs.

1. - Introduction. 

This paper is concerned with the standard problem of reaching the
origin in minimum time, for the control system

where F, G are e3 vector fields on the plane, with F( 0) = 0. Calling A(r)
the set of points which can be steered to the origin within a fixed time
r, by a regular optimal feedback synthesis we mean a partition of A(r)
into finitely many embedded manifolds mti and a feedback control law
u = u(x), whose restriction to each :1Trï is smooth, such that every
Carath6odory trajectory of the (usually discontinuous) O.D.E.

starting within A(r) reaches the origin in minimum time. In general,
the controllable set A(r) will thus be divided into finitely many open re-

(*) Indirizzo dell’A.: Via Beirut 4, Trieste 34013, Italy.
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gions where u(x) _ ± 1, separated either by switching curves, or by
singular arcs, or else by «overlap curves», consisting of points which
can be steered to the origin optimally by two distinct control func-
tions.

In the case of analytic vector fields, the existence of a regular opti-
mal feedback was established in [11,12]. Aim of this paper is to prove
that the result remains valid for generic vector fields F, G E e3. More
precisely, using the Pontryagin Maximum Principle, we will single out
a set of generic assumption on F, G E ~3 , which imply that all optimal
trajectories are a finite concatenations of integral curves of the three
flows

Here the feedback function u = is defined at (3.18), in terms of F,
G and of the Lie bracket [F, G]. A uniform bound on the number of arcs
forming these trajectories is derived. Relying on this «finite dimen-
sional reduction» of the time-optimal problem, we prove the existence
of a time optimal synthesis, valid for generic vector fields F, G E
E C3.

This work represents the first step of a research program aimed at
the classification of generic planar time optimal feedbacks, under a
topological equivalence relation, in analogy with the well established
theory valid for smooth O.D.E. in the plane [7,8]. The classification of
local singularities will be done in the forthcoming paper.

2. - Basic definitions.

If x E IV and r &#x3E; 0, by B(x, r), R(x, r) we denote respectively the
open and the closed ball centered at x with radius r. Given a set 
we write Int(C), Cl ( C) and Fr(C) for the interior, the closure and the
topological frontier of C. If C is a submanifold with boundary, we will
use the symbol aC to denote the boundary of C.
A curve in is a continuous map y: where I is some real

interval. Its domain is thus Dom(y) = I. If x E Dom(y)}, we
simply write x E y. The symbol y ~J, where J c Dom ( y ) is an interval,
denotes the restriction of y to J. Similarly, if E is a control system
defined in and U c is an open set is the restriction
of T to U.

As usual, the space of vector fields F = (F1, F2 ) on whose partial
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derivatives of order - 3 are bounded on 1E~2 , will be endowed with the
norm:

where is a differential operator of order

A vector field F on can be written in the form:

where aX2 are the constant vector fields with components (1, 0),
(o,1), respectively. By VF we denote the Jacobian matrix of first order
partial derivatives of the vector field F in (2.1). We write e tF (x) for the
value at time t of the solution of the Cauchy problem:

while ( e tF) * will denote the Jacobian matrix of the map

We recall that the Lie bracket of two vector fields F, G is the vector
field

We use the symbol to denote the subspace of all pairs of vector fields
on the plane (F, G) E e3 x e3 with F(0) = 0 E ~2. From now on, we fix a
pair (F, G) and consider the control system:

We shall usually write E = (F, G) to indicate the control system
(2.5).
A control is a measurable function u : [ a, b ] - [ -1, 1 ] where - 00 

 a ~ b  +00.A trajectory corresponding to u is an absolutely con-
tinuous curve y: Dom(u) - R2 which satisfies the equation:

for almost every t in the domain of u. The set of all traiectories of z is
denoted by Traj (2). If y: [a, b ] H 1E~2 is a trajectory of Z we define the
initial and terminal points of y as In(y) ’-- y(a) and Term(y) = y(b). The
time along y is defined as
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A trajectory y e Traj (Z) is time optimal if, for every trajectory
y ’ E Traj (1:) with In ( y ’ ) = In(y) and Term ( y ’ ) = Term (y), one has
T(y’) ~ T(y).

If [ a, b ] H [ -1, 1 ] and ~2~ [ b, c] ~ [ -1, 1 ] are controls, their
concatenation U2 * Ul is the control:

If y 1: [ a, 6]’-&#x3E;R~ y 2 : [ b, c]~R2 are trajectories of Z for ul and u2
such that y 1 ( b ) = y 2 ( b ), then the concatenation y 2 * y 1 is the trajecto-
ry :

For convenience, we also define the vector fields

We use Traj (X) [Traj ( Y)] to denote the set of all trajectories of E which
correspond to the constant control u = -1 [u = 1 ]. Elements of

Traj (X), Traj (Y) will be called X-trajectories and Y-trajectories, re-
spectively. A bang-bang trajectory is a trajectory obtained as a finite
concatenation of X and Y-trajectories. We write Traj (E1 * ... * En),
where Ei i = X or Ei i = Y, to denote the set of all concatenations y =
= y 1 * ... * Y n where y i E Traj ( ~ i ) and is not trivial, i.e. its domain is not a
single point. We also say that y is of type * ... (see [10] for com-
plete description of this notation).

Instead of steering the system to the origin in minimum time,
throughout the following we shall consider the entirely equivalent
problem of reaching points in in minimum time, starting from the
origin. If 1: ~ 0, we denote by R( 1:) the reachable set within time 1::

The minimum time , function, T: R’ - [ 0, +00] is defined by

Recalling (2.9) we have:
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Clearly, a trajectory y E Traj (E), with Dom(y) = [0, b], In(y) = 0, is

optimal if and only if T(y(b)) = b. In this case we write y e Opt(E).
The convexity of the set + uG(x): 1 ) and the bound on

the derivatives of F and G imply the following:

LEMMA 2.1. If 0 % r  +00 then the set R(i) is compact,. For any
x E R~, if T(x) = z then there exists y E Traj (1) such that y( 0) = 0,
y(z) = X.

For the proof see [5] Th. 20.1 p. 107.
The control system I is locally controllable if, for each r &#x3E; 0, the set

R(r) contains a neighborhood of the origin. The following results are
well known [6, p. 366]:

LEMMA 2.2. If the system E is locally controllable then the mini-
mum time function is continuous for every r &#x3E; o~ &#x3E; 0, one

has

LEMMA 2.3. If F(O) = 0 and the vector fields G, [F, G] are linearly
independent at the origin, then the system I = (F, G) in (2.5) is locally
controllable.

A synthesis for the control system E at time 1: is a family r =
of trajectories satisfying the following

conditions:

a) For each xER(1:) one has y x (bx ) = x.
b) If y = y x ( t ) where t e Dom(yx) then y ~ = y x ~‘[ 0, t].

A synthesis for the system Z is time optimal if, for each x E R(r),
one has yx (T(x)) = x, where T is the minimum time function defined at
(2.10).

3. - Pontryagin maximum principle and special curves.

An admissible pair for the system E is a couple (u, y) such that u is
a control and y is a trajectory corresponding to u. We use the symbol
Adm (Z) to denote the set of admissible pairs and we say that (u, y) E
E Adm (I) is optimal if y is optimal.
A variational vector field along (u, y) E Adm (E) is a vector-valued
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absolutely continuous function v: that satisfies the

equation:

for almost all t E Dom (y).
A variational covector field along (u, y) E Adm (E) is an absolutely

continuous function A: Dom(y) - R2* that satisfies the equation:

for almost all Here denotes the space of row vec-
tors.

The Hamiltonian ~C: x x R~R is defined as

If Å. is a variational covector field along (u, y) E Adm (2), we say that A
is maximizing if:

for almost all t e Dom ( y ).
The Pontryagin Maximum Principle (PMP) states that, if (u, y) E

e Adm(Z) is time optimal, then there exists:

(PMP1) A non trivial maximizing variactional covector field A along
(u, y).

(PMP2) A constant such that: X(À(t), y(t), u(t)) + Ào = 0 for
almost all t E Dom(y).

In this case A is called an adjoint covectorfield along (u, y) or sim-
ply an adjoint variable, and we say that ( y, A) satisfies the PMP, or
that y is an extremal trajectory.

If A is an adjoint covector field along (u, y) e Adm (Z), the corre-
sponding switching function is defined as

A time t E Dom ( y) is called a switching time for y if, for each E &#x3E; 0,
y t[t - E, t + El is neither an X-trajectory nor a Y-trajectory. If t is a
switching time for y then we say that y(t) is a switching point for y, or
that y has a switching at y(t).

LEMMA 3.1. If (u, y) E is extremal and A is an a,djoint
covector field along (u, y) then 0.1 (t) = 0 at every switching time t.
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Consider (u, y) to E Dom(y) and vo E 1E~2 . We write

v(vo , to ; t) to denote the value at time t of the variational vector field
along (u, y) satisfying (3.1) together with the boundary condition

v( to ) = vo . If to , t1 E Dom ( y ) we say that to and t1 are conjugate along y if
the vectors v(G(y(t1), t1; to) and G(y(to)) are linearly dependent.

Let D, D’ be two e2 connected one-dimensional embedded submani-
folds of R2. We say that D ’ is a conjugate curve to D along the X-trajec-
tories if there is a bijective function 1jJ: D -D ’ with the following
properties. If y x is the X-trajectory satisfying = x, then =

= yx (t(x)) for some time t depending continuously on x, and the times 0,
t(x) are conjugate along yx . Conjugate curves along the Y-trajectories
are defined similarly.

LEMMA 3.2. If y E extremal and to, t1 are switching
times for y, then to and t1 are conjugate along y.

For the proof of this lemma see [10]. A straightforward computation
yields:

LEMMA 3.3. If (u, y) extremal and A is an adjoint
covector field along ( u, y ), then the switching and its
derivative is given by:

For each x E R2 , one can form the 2 x 2 matrices whose columns are
the vectors F, G, or [F, G]. As in [10], we shall use the following scalar
functions on R :

where det stands for determinant and A denotes an exterior product.
A point x E is called an ordinary point if

On the set of ordinary points we define the scalar functions f, g as the
coefficients of the linear combination
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In [10, p. 447] it was shown that

In the following, given two nonzero vectors v, v’ E ~2 , by arg(v, v’ ) E
E [-1’&#x26;, we denote the angle between them, oriented from v to v’ . If
vo is a constant vector and v( t ) ~ 0, one has

LEMMA 3.4. Let (u, y) E Adm (E), to E Dom (y). For every t such
that G(y(t)) ~ 0, define the angle

The?4 one has

Indeed, for any t at which G(y(t)) does not vanish, one has

where the matrix M(to , t) is defined by

Since M( to , t ) preserves orientation, by (3.12) we have

proving (3.14).

THEOREM 3.5. Let U c R2 be an open set such that each x E U is an
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ordinary point. Then all optimal trajectories y U are bang-bang
with at most one switching. Moreover if f &#x3E; 0 throughout U then y is an
X-, Y- or Y * X-trajectory, if f  0 throughout U then y is an X-, Y- or
X * Y-trajectory.

For the proof see [10] Theorem 3.9 p. 443.
A point x at which A A (x) A B (x) = 0 is called a nonordinary point. A

nonordinary arc is a e2 one-dimensional connected embedded submani-
fold S of R2 , with the property that every x E S is a nonordinary point.
A nonordinary arc will be said isolated if there exists a set U satisfying
the following conditions:

(C1) U is an open connected subset of R.2.

(C2) S is a relatively closed subset of U.

(C3) If x E U~S then x is an ordinary point.
(C4) The set has exactly two connected components.

An open turnpike is an isolated nonordinary arc that satisfies the
following conditions:

(Sl) For each x E S the vectors X(x) and Y(x) are not tangent to S and
point to opposite sides of S.

(S2) For each x E S one has = 0 and d A (x) ~ 0.

(S3) Let U be an open set which satisfies (Cl-4) above. If Ux and Uy
are the connected components of U~ S labelled in such a way that
X(x) points into Ux and Y( x ) points into UY , then the function f in
(3.10) satisfies

A e2 one-dimensional connected, embedded submanifold with

boundary S c R2 is a turnpike if is an open turnpike. Next, con-
sider a turnpike S and a point xo E S. We wish to construct a trajectory
y E such that y(to) = xo and y(t) E S for each t e Dom (y) =
* [to, tll. Clearly, one should have d B (y(t)) = 0 for all t. Since
L1 B (y(to)) = 0, it- suffices to verify that:

The above holds provided that
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From (Sl) we have that:

the values of the control u are thus uniquely determined by

The turnpike S is said to be regular if the function cp s in (3.18)
satisfies:

A curve y E Traj (E) is said to be a Z-trajectory if there exists a regular
turnpike S such that ~ y(t): in this case we write

y E Traj (Z).
A an isolated nonordinary arc (or INOA) S is said to be of the turn-

pike type if it verifies (Sl), (S3) and:

(S2’ ) Each of the function L1 B is either identically zero on ,S or
nowhere zero on S

then every turnpike is of the turnpike type but not viceversa.
A an isolated nonordinary arc (or INOA) is said to be of the anti-

turnpike type if verifies (Sl), (S2’) and the following condition:

(S3’) Let U be an open set which satisfies (Cl-4) above. If Ux and Uy
are the connected components of U ~ S labelled in such a way
that X(x) points into Ux and Y(x) points into UY, then the func-
tion f in (3.10) satisfies

We say that S is a nondegenerate INOA of the antiturnpike type if it
verifies:

(SN) If on S then either or never vanish
on S.

A point x e is a near-ordinary point if it is an ordinary point or
belongs to an INOA that is either of the turnpike type or nondegener-
ate of the antiturnpike type. In [10, p. 459] it was proved the follow-
ing :

THEOREM 3.6. Let x be a near-ordinary point. Then there exists
a neighborhood U of x such that every optimal trajectory y of
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~ ~ U is concatenation of at most five trajectories each of which
is an X-, Y- or Z-trajectory.

It can happen that contains curves whose points can be reached
in minimum time using different optimal controls. An overlap curve is a
e2 one-dimensional connected embedded submanifold I~ of 1E~2 , with the
property that for each point of K there exist two distinct time optimal
trajectories y 1, y 2 : [0, b ] H 1I~2 , and E &#x3E; 0 such that:

and y 1 f[6 - E, b] is an X-trajectory, while y 2 r[ b - E, b ] is a Y-tra-

jectory.

4.- Bounds on the number of arcs.

The aim of this section is to prove, given z &#x3E; 0, the existence of
generic conditions on F, G ensuring that every time optimal trajectory
in R(r) is a finite concatenation of X-, Y and Z-trajectories; more pre-
cisely for each E in a generic subset of ~ there exists that bounds
the number of these trajectories.

Given a trajectory y E we denote by n(y) the smallest
integer such that there exist y e Traj (X) U Traj (Y) U Traj (Z),
i = 1, ..., n(y) verifying:

We call n(y) the number of arcs of y.
Given 1: &#x3E; 0 let define II 7: to be the class of systems having an a pri-

ori bound on the number of arcs of optimal trajectories:

A subset of is said to be generic if it contains an open and dense
subset of . A condition for E = (F, G ) is a logic proposition involv-
ing the components of the vector fields (F, G), their derivatives or set
and functions that can be defined using them. Given a condition P for
T we write P(E) if the system satisfies the condition P. A condi-
tion P is said to be generic if P(~)} is generic. If Pl , ... , Pn
are generic conditions then it is easy to verify that ~-7:

P, (E), ... , Pn (Z) ) is generic.
We now give a finite number of generic conditions Pl , ... , Pn that
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assure the genericity of this means:

From now on we consider a fixed time z &#x3E; 0 and a fixed system
T = (F, G) and we describe the conditions of (4.1). The first
condition is:

(Pl) F( o ) and [F, G](0) are linearly independent.
From (PI) and Lemma 2.3 it follows that the system E is locally control-
lable. The second condition is:

(P2) Zero is a regular value for the functions A A and A B

this means:

and the similar condition with L1 B rather than L1 A in (4.2). From (P2)
we have that the sets L1¡-(0) = x E R(r): 4 A (z) = 0 ) and L1¡(0) =

are e2 one-dimensional compact embedded
submanifold of 1E~2. So we can give the following generic condition:

(Ps) The set L1¡- (0) n d B ( o ) is finite.

Let TanA be the set of points such that X(x) or Y(x) is

tangent to L1 ¡- ( 0). Define TanB in the same way using L1 B rather
than L1 A .

(P4) TanA and TanB are finite sets.

We will call bad points the elements of the set:

It is easy to verify that if x E R(r)BBad(,r) then x is a near-ordinary
point. From (P3), (P4) we obtain:

(Pb) Bad(r) is finite.

From Theorems 3.5 and 3.6 we know the structure of time opimal tra-
jectories in a neighborhood of a near ordinary point; it remains to con-
sider the case of bad points.

LEMMA 4.1. If x E Bad(1:), 0 then , i
and only if x E TanA .

PROOF. Being 0 we can choose a local system of coordinates
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such that

Assume, first, that ~eJ~(0)nj~(0). From d B ( x ) = 0 we have
[F, G](~), G(x) are collinear and then:

finally:

We conclude that x E TanA .
In the same way if x E TanA then = 0.

We can now prove the following:

THEOREM 4.2. Under generic conditions on F, G E &#x26;, for every
x E Bad(r) there exist Ux , neighborhood of x, and Nx E ~T such that if
y E Opt (Z) E [ bo , c Ux then:

PROOF. Consider x and y satisfying the assumptions above. For
sake of simplicity in the proof we write y instead of y r[ bo , bi ]. We have
three cases:

Take Ux open connected such that x is the only bad point in Ux and Ux -
- (4 z (0) has four connected components Ul , ... , U4 . Assume
that, say, F(x) points into Ul and - F(x) into U2 . See Fig. 1. Then it is
clear that for Ux sufficiently small the same happens for X( y ), Y( y ) y E
E Ux . Following y, we can move from U2 into any other component, while
from U3 or U4 we can move into U1; there are no other possibilities.
From Theorem 3.6 we have that for each (i = 1, ... , 4),
n(y [~~t: y(t) E Cl ( Ui )~) ~ 5 therefore the conclusion holds, with Nx = 15.
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Figure 1.

Case (2). Let y range on d A ( o) and assume that:

If X and Y have the same orientation, then we can proceed as in case (1).
In the following, we thus study the case where they have opposite
orientations.

Take Ux open connected such that x is the only bad point in Ux and
Ux ~ (d A ( o) n d B ( o)) has four connected components Ul , ... , U4 . Let
A1 be the connected component of (d A ( o) that comes be-
fore x in the orientation of X(x) and A2 the other component. We label

... , U4 in such a way that, see Fig. 2:

X( y) points into U1, Y( y) points into U2 for y e AI,
X( y) points into U3 , Y( y) points into U4 for y E A2 .

Choosing Ux smaller if necessary, we can assume that X;e 0 ~ Y on
Ux . Moreover, we can assume that X( y) points into U3 for each

Y( y ) points into U2 for each 
and X( y), resp. Y( y), points into U3 U U4 , resp. Ul U U2 , for every
y E D B (0) n Ux.

Suppose first that f  0 (see (3.11)) on Ul then f &#x3E; 0 on U2. From
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Figure 2.

Theorem 3.5 it follows that if y enters U3 then it remains in U3 and the
same happens for U2.

The set ~1 * 4 g (0) n Fr(U1) is an INOA of the antiturnpike type
and there exists 1~, depending on Ux , such that:

Following the proof of Theorem 6.4 in [10, pp. 459-465] we obtain that,
for Ux sufficiently small, every time optimal trajectory in Ul U U4 U B1
does not contain any trajectory of the type X * Y * X or Y * X * Y. The
proof relies essentially on the construction of an envelope for such tra-
jectories. For the theory of envelopes we refer to [9] and [13]. The uni-
form bound in (4.4) assure the admissibility of these envelopes.

More precisely let y’ be an Y * X * Y trajectory. Let t1 be the first
switching time of y ’ , E &#x3E; 0, and define the extremal trajectories y s
which correspond to control + 1 up to time s E [t1 - E, t1 + E] and then
switch to control - 1. The second switching points of y s form a curve C.
Repeating the reasoning of Theorem 6.4 of [10], we obtain that there
exists a feedback control e] - 1, 1 [, y e C, such that C is run by a
trajectory yc corresponding to uc. Moreover, if a is the second switch-
ing time of y s then y = y c * 7s [[ 0, Q] takes the same time as y ’ to steer
its initial point to its terminal point. Therefore if y’ is optimal then y is
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optimal too. But y does not satisfy the PMP, hence y’ cannot be
optimal.

Then it is clear that N( y ) is finite unless y has a switching point on
In this case y switches precisely at the points where it meets
indeed two switching points have to be conjugate. Assume that

X, Y points toward otherwise consider y with reversed time.
Choose a local coordinate system such that x = ( o, 0), LI¡- (0) =
= ~( p, and d B ( o) _ ~( o, q): q E 1~}. Suppose that y(to) =
= (0, qo), y(tl) = (0, and that y switches at (po, 0) = Y(SO), So ty.
We have that:

in fact X, Y are parallel along From (4.5), (4.6) we have
that:

and if we call t2 the next time in which y touches the ordinate axis we
have:

Then calling tn the time of the n-th crossing of the ordinate axis we
obtain:

If t is the time between the first two switchings to , tl on n Ux
then we have a lower bound on t. Indeed, if moving backwards along y
we intersect again, then to is not the first switching.
Hence, given it &#x3E; 0, from this lower bound and from (4.7) we have a
bound on the number of arcs for y.

It remains to consider the case in which f &#x3E; 0 on Ul and then
f  0 on U2. Let yx, yy be, respectively, the X-, Y-trajectory with
In ( yx) = In ( y Y) = x; let VI be the connected component of U
U y y) containing U1, U4 , and let V2 be the other connected component.
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If 4A  0 on U2 and y moves from VI to V2 , then it cannot return
back to VI remaining in Ux the opposite happens if 4A &#x3E; 0 on U2 .

If y is contained in V2, we can use (4.4) to obtain, as above, a bound
on n( y ).

Suppose that y is contained in Vi . If y either has a switching in Ul U
U U4 , or switches at to on J~(0), then it cannot switch again. Indeed
from Theorem 3.5 and the geometry of Ux , we have that y does not
cross (0) before a second switching. Moreover, from Lemma 3.4, we
have that a(to) = 0, a defined in (3.13), and a is monotone since the sign
of his derivative is equal to the sign of 4 B . Hence, for Ux sufficiently
small y cannot have another switching in Ux .

If y switches on ( 0 ) we proceed as above. We obtain a bound on
the number of arcs unless y has a sequence of switchings on V ’-- (VI n
f1 ( U2 U U3)). In this case by (4.4) and (P7) we can use the same construc-
tion of Theorem 6.4 in [10, pp. 459-465], i.e. we can construct an admissi-
ble envelope. This concludes the proof of the second case.

Case (3). We assume that:

(P8) 

Suppose, for example, that = 0. Take Ux open connect-
ed such that x is the only bad point in Ux and 0 on Ux . Let y y be
the maximal Y-trajectory passing through x and let U1, U2 be the con-
nected components of See Fig. 3. For Ux sufficiently small

and X(y) points to the same side of y y for
every y E y y If X(x) points into Ul then. y cannot cross from Ul
into U2 , and viceversa if X(x) points into U2 . Since in U1, U2 we have an
a priori bound on the number of arcs of y, as in the preceding cases, the
proof is completed.

By the previous analysis, under the generic assumptions ( Ps ), ( P7 ),
(P8) the conclusion of the theorem holds.

Using Theorem 4.2 for each x E R(r) we can select an neighborhood
Ux such that every optimal trajectory remaining in Ux is the concatena-
tion of % Nx regular arcs. Choose Ex &#x3E; 0 such that B(x, c !7p. Since

c U B(x, by compactness we can extract a finite subcover
x e R(r)

i = 1, ... , n, Consider an extremal pair (u, y),
y: [ 0, z] H H2 , In ( y ) = 0. Define:
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Figure 3.

Choose i1 such that 0 E B(Xi¡, E). Let t1 be either the first time such
that:

y(t1) E B (xi1, 2e=
or ti -r if y remains in 2E). Then there exists i2 # il such that
y(t1) E B(xÏ2’ E). Let t2 be either the first time for which y(t2) it
g B(Xi2’ 2E) or t2 = r if y remains in B(Xi2’ 2E). We proceed in the same
way defining a set of increasing If

I + : denotes the maximum speed of
trajectories inside 72(T), it’s clear that tj - EIM. Therefore:

By definition, for each tj, j = 1, ... , v, we have E [ t~ _ 1, 
is contained in 2 E ). Using Theorems 3.5, 3.6, 4.2 toghether with
(4.9) we obtain:

We have thus proved the following:

COROLLARY 4.3. For every r &#x3E; 0 the set II 7: is a generic subset of E.
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5. - Existence of a regular synthesis.

Given a system E e we can construct a synthesis T for ~. We can
follow the classical idea of constructing extremal trajectories and delet-
ing those trajectories which are not globally optimal. At the end we ob-
tain a set of trajectories from which we can extract a synthesis. This
synthesis is optimal by construction. For synthesis theory see [1-3]
and [14].
We can describe an algorithm a by induction. At step N, we con-

struct precisely those trajectories x( ~ ) which are concatenation of N
bang- or singular arcs and satisfy the Pontryagin maximum principle.
The endpoints of the arcs forming these trajectories, corresponding to
the switching times of the control, are determined by certain nonlinear
equations. Under generic conditions such equations can be solved by
the implicit function theorem, thus determining a smooth switching lo-
cus. Eventually the algorithm will partition the reachable set R(r) into
finitely many open regions (where the optimal feedback control is ei-
ther u = 1 or u = -1 ), separated by boundary curves and points, here
called frame curves and frame points, respectively.

At each step, it may happen that distinct extremal trajectories
reach the same point xo , at different times. It is therefore necessary to
delete from the synthesis those trajectories which are not globally opti-
mal. This procedure will usually produce new «overlap curves-, con-
sisting of points reached in minimum time by two distinct trajectories,
one ending with the control value u = 1, the other with u = - 1.

If at step N the algorithm a does not construct any new trajectory
then we say that a stops at step N (for I at time r). From Corollary 4.3
it is clear that under generic assumptions, there exists N(I) such that a
stops before step N(I) and, by construction, we have y is con-
structed by a) = 0pt(Z). In this case we define Ra (r) to be the set of
points reached by the trajectories constructed by a; notice that

Rtl(i) = 7~(T). We let be a frame curve and let its intersec-
tions with other frame curves be frame points.

If a stops then for each x E R(r) there exists a set of constructed tra-
jectories that reach x. Define ’-- ~ y : y is constructed by ~,
Term(y) = x}.

We want to select, for each x E R(i), a trajectory from 7~ to form a
synthesis. Define K~ to be the set of points x E R( z) reached by at least
one constructed trajectory y satisfying n(y) ~ k. Notice that Kk is com-
pact for each 1~ and KN(I) = R(i). We proceed by induction on 1~. Given
x E Kk ~ Kk _ 1, we consider the optimal trajectories y E formed by k
arcs, for which the following holds. If y = y( t ) is the initial point of the
last arc of y then y r[ 0, t ] has been selected from T y by induction. Final-
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ly, if there are more than one such trajectories then we select one, say
according to the preference order X, Y, Z on the type of the last
arc.

In this way, at step N(~), we have constructed a synthesis for E at
time r. We use the symbol r) to denote this synthesis and we call
it the synthesis generated by the algorithm a. We have the follow-
ing :

THEOREM 5.1. Consider E and r &#x3E; 0. If (1 stops for T at time r
then í) is an optimal synthesis.
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