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Groups Preserving the Cardinality
of Subsets Product under Permutations.

YANG KOK KIM (*)

ABSTRACT - A group G is said to preserve the cardinality of 2-element subsets
product under permutations, or G is a PC( 2, n)-group if either G = 1 or for
each n-tuple (Sl, ... , 8n) of 2-element subsets of G, there is a non-identity
permutation a such that 18182". S. I = I sQ( 1) 8a(2) ... Sa(n)|, where 1S1 I
means the cardinality of a set S’. Some characterizations of PC(2, n)-groups
are presented here.

1. - Introduction.

Recently there has been much interest in the study of groups satis-
fying «finiteness conditions», for example, groups with various per-
mutability conditions (see, for instance, [1,2] and [3]). A group G is
called a PSP-group if there exists an integer n &#x3E; 1 such that for each n-

tuple (Hl , ... , Hn ) of subgroups of G, there is Q ( ~ 1 ) such that the
two complexes H1 H2 ...Hn and ...Ha(n) are equal. It was
shown in [5] that a finitely generated soluble PSP-group is finite-by-
abelian. In this note, we consider a similar notion of permutable prod-
ucts, for 2-element subsets of G instead of subgroups of G.

NOTATIONS. For subsets S, ,Sl , ... , ,Sn of a group G and an element
g in G, sl s2 ... Sn = ~ sl ... sn ; si E S2 ~, and g ~ ,S =

s E S 1. Furthermore 181 I means the cardinality of a set S.

DEFINITION. For an integer n &#x3E; 1, a group G is said to preserve the
cardinality of 2-element subsets product under permutations, or G is a

(*) Indirizzo dell’A.: Department of Mathematics, Dongeui University,
Pusan 614-714, Korea.
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PC(2, n)-group if either G = 1 or for each n-tuple (81, ..., Sn) of 2-ele-
ment subsets of G, there is a permutation a(* 1) in Zn such that

Let PC(2) be the class U PC( 2, n). We give a complete description of
n&#x3E;1

PC( 2, 2) and PC(2, 3)-groups and show that PC(2)-groups are center-
by-finite exponent. As an immediate corollary, we note that PC(2)-
groups are collapsing in the following sense. In [8], Semple and Shalev
called a group G n-collapsing if for any set S of n-element in G, I 
 n n and G is collapsing if it is n-collapsing for some n &#x3E; 0. They proved
that for a finitely generated residually finite group G, it is collapsing if
and only if it is nilpotent-by-finite.

As we see in the following remark, it makes sense to fix one side
of 1.1.

2. - Remark.

A non-trivial group G has the following property. Let n &#x3E; 3. For
each n-tuple (S1, ... , Sn) of 2-element subsets of G, there exist distinct
permutations a, such that the cardinalities of 8a(1) ... SQ~n~ and

... ,S.~n~ are the same. Note 4, then n! &#x3E; 2n .
So the number of permutations is strictly greater than the number of
possible cardinalities of all permutable products. Hence there are two
distinct permutations with the above property. Suppose n = 3. Let
Sl , S2 and S3 be three given 2-element subsets of G. If

, we are already done. So we can as-
for some

Now by a simple calculation, we get that

, then we have ; J

contradiction. So
Without loss of generality, we can assume y =

, there are two cases to exam-
ine.
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yzzl , yzzz, 1. Now suppose 18288811 I  6. Then at least one ele-
ment in lies in Note that 
p ZZJ x1 = zi zi z « YZZZJ Xl = YZZJ Xl X 4* YZ1 x1= YZZZZJ Xl = YZZZ1 Xl X
and yzzz1x1 =yz1x1x - yzl x1 = yzzi zi z yzzzl x1 x. So that
one element in lies in implies that the other two ele-
ments in S2 S3 ~ x, belong to 8288. x, x. Hence 6 or 3. Similar-

ly we can show 18881821 = 6 or 3.

Case (ii). y = y1 z, y1 = xyz and xy = yz.

This case can be checked by the same argument as in case (i).

3. - Results.

Clearly PC(2) contains all finite groups. So for a given n, it seems
hard to characterize PC( 2, n)-group. However in a very particular case,
we have a complete result.

LEMMA 3.1. Let G be a PC(2, 2) or PC( 2, 3)-group and x, y E G.
Then

PROOF. (i) If x has order 2 and [x, y] ~ 1, take S, = {1, x}, S2 =
= {1, forall

1) E Is and 

(ii) Let G be a PC(2, 3)-group. For S, = { l, x}, S2 = { y, 
and S3 = { 1, y -1 xy }, there is a non-trivial o such that 

There are five cases to check. We consider one of them (the others
are similar). Suppose Sl S2 Sg ~ _ ~ 18381821 ~ 4. If [ = 2, x 2 = 1
and so x e Z(G), a contradiction. Hence I = 3.
Note that So at least two elements in

are in The non-trivial possible cases are (i) y =
(ii) xy (iii) x 1 y = y 1 xyy and (iv) x -1 y -
Moreover two of these relations should hold. Note that (i) or

(iii) is equivalent to the relation we want. If (ii) and (iv) are true, then
= x -2 = x2 . Since X2 lies in the center of G, X 2 gives a

contradiction. If G is a PC(2, 2)-group, take 81 = 11, x} and S2 =
= y}. We then get the same result by a simple calculation.
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THEOREM 3.2. G is a PC(2, 2) or PC(2, 3)-group if and only if ei-
ther G is abelian or the direct product of a quaternion group of order 8
and an eternentary abelian 2-group.

PROOF. Let G be a PC(2, 2) or PC( 2, 3)-group. Then by Lemma
3.1(ii), xy = x 1:1, any x, y in G. So G is a Dedekind group and every ele-
ment of odd order is in the centre of G. If G is not abelian, then G has no
elements of odd order, otherwise, with x, y, z in G, [x, y] ~ 1, z of odd
order, we get = Now the result follows from the
structure of Dedikind groups (see [6], p. 139).

For the converse, let G = Q x D where D is an elementary abelian
2-group and Q a quaternion group of order 8. First we show that G is in
PC(2, 3). Let A, B and C be three given 2-element subsets of G. Write
A = ~ by, and C = ~ g2 , where a, b, c, d E Q,

I and I CAB I =
= ~},C’ = {1, 
that in C" , E = 1 if g2 g1 lies in the centeralizer of d, and E = -1 if
not.

Case (i). I AB I = 4.

. Since C’ - ~ 1, dw ~ and C" - ~ 1, d ~ w ~, A’ BC’ = A’ B U A’ B ~ dw
and C"A’ B = A’ B U d’w - AB. Note that if there is one element in
A’ B ~ dw which is in A ’ B, then there is one element in dEw. A’ B which
is in A’ B. The converse is also true. For example, suppose that by =
= abdxyw. Then by = abdxyw = d 1/ abxyw p by = d’abxyw if E = t7,
and if not. This means I A’ BC’ I =
= [ and so .

Case (ii). ~ AB ~ I = 3.

This case can be checked by the same argument as in case (i).

Case (iii). lAB I = 2.
Since I = 2, we have b = ac and c = ab .

So c = ab = aac and a 2 = 1. Hence A ’ lies in the center of G. Thus

Similar argument can be applied to show that G is in

PC(2, 2)..

THEOREM 3.3. A PC(2, n)-group is center-by-(finite exponent.
f(n)).

PROOF. We claim that there exists an integer 1~ such that X] =
= 1 for all x, y e G. Let x, y e G. We consider the n-tuple (Sl , ... , Sn) of
2-element subsets of G where Then =
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, and 18182... Sn I = min ( ~ x 1, n + 1 ). Since
G is a PC(2, n)-group, there is a permutation such that

If I g(n - i, 1) 1 and I are strictly increasing functions of i, j
for all l, then for an integer j such that + 1 ~ + 1),

0) de-
pends on Q and so on x, y. However note that there are only finitely
many choices of s independent of x, y, say, Let k =
= I.e.m. f si: i = 1, ... , Then [X, = 1 for all x, y.

Suppose that I g(n - i, 1) 1 or I is not strictly increasing.

Case (i). Ixl [ &#x3E; n + 1.

Let I = g( L, j + 1 ) ( . Then g( L, j + 1 ) = g( L, j ) ~ y U

for any h. Since
This is a contradiction.

Case (ii). + 1.

For SaC 1) Sa(2) ... Sa(n) , let j be an integer such that a (j) + 1 ~ a (j + 1 ).
Now we can assume that ISa(j)Sa(j+1)1 1 = 4. Then since IS1S2...Snl I =
= 

, we can find p, q with p ~ j  j + 1 ~ q such that q) I =
= q + 1) ~ 1 or 1~ q) I = q) I . Let I g(p, q) I = I g(p, q +
+ 1 ) ~ 1 (the other case is similar). Then we have a relation g(p, q) =
= g(p, q) &#x3E; where r = U(q + 1) - 1. So g(p, q) = g(p, q)(xyT)h for

where m = q - p + 1. Thus for some integer t, we have relation

lxl. Since 
for some k. In every case our s and k depend on x, y. However there are
still only finitely many choices of s and k that are independent of x, y.
This completes the proof.

A group G is restrained if there is an integer n such that ~x~~~&#x3E; is
generated by n elements for all x, y e G. In [4], the following is

proved.

LEMMA 3.4. Let G be a finitely generated restrained group. If H is
a normal subgroup of G such that G/H is cyclic, then H is finitely
generated.
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PROOF. For some g E G, we can write G in the form H(g). Since G is
finitely generated, there exist h2 , ... , hr in H such that G =
= (hi , h2, ..., g~andH = ~hl, h2, ..., h,,)G . Foreachi = 1, ..., 
is finitely generated, say, (hi!, ... , Now let H, =

1 ~ i ~ r, 1 ~ L(i) ~ d(i)). Then clearlyg lies in NG (H,), the nor-
malizer of HI in G and ~hl , ... , hr~  H1. Hence NG (Hl ) = G. This
means that HI = H and H is finitely generated.

Now we mention some properties of PC(2) as immediate conse-
quences of Theorem 3.3. For closure properties, we follow notations
in [7]. Consider the restricted direct product G = DrAn , where An is
the alternating group of degree n &#x3E; 4. Then G is locally finite but has
no center. Clearly the standard wreath product of two infinite cyclic
groups is not center-by-finite exponent. Neither is a free product of
two infinite cyclic groups.

COROLLARY 3.5. (i) A PC(2)-group is collapsing.
(ii) A PC(2)-group is restrained.

(iii) The class of PC(2)-groups is not closed under any of the clo-
sure operations P, D, C, W, F, R, L.

QUESTIONS. (i) For G, H e PC(2), is G x H in PC(2)?
(ii) Is PC( 2 ) quotient-closed?

COROLLARY 3.6. A finitely generated soluble PC(2)-group G is

center-by-finite.

PROOF. By Theorem 3.3, G is center-by-(finite exponent). And a
finitely generated soluble group with finite exponent is finite.

Locally graded groups are those groups in which every finitely gen-
erated non-trivial subgroup has a finite non-trivial quotient.

THEOREM 3.7. If G is a finitely generated locally graded PC(2)-
group, then G is center-by-finite.

PROOF. Let N be the finite residual of G. By Theorem 3.3 G is cen-
ter-by-(finite exponent). Thus G/N is a finitely generated residually fi-
nite center-by-(finite exponent). It was shown in [11] that a finitely
generated residually finite group of finite exponent is finite. Hence

G/N is center-by-finite. G is restrained and so N is finitely generated
by repeated applications of Lemma 3.4. Let N ~ 1. Since G is locally
graded, N has a non-trivial finite factor group But then
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is finite and G/coreG K) is finite-by-(center-by-finite).
This group is polycyclic-by-finite and so it is residually finite, contrary
to the choice of N.

An element g of a group G is called an FC-element if it has only a fi-
nite number of conjugates in G. In particular if there is a positive inte-
ger m such that no element of G has more than m conjugates, then G is
called a BFC-group. The subgroup of all FC-elements is called the
FC-center.

THEOREM 3.8. A finitely generated non-periodic PC(2)-group G is
center-by-finite.

PROOF. Let G = (xl , X2, ... , xr~ be a PC( 2, n)-group and let z be an
element of infinite order in Z( G ), the center of G. For WE G, let Ny be a
right coset of N, the normalizer of (x) where x = wz if w has finite or-
der, and x = w if not. Suppose that y is reduced and = m &#x3E; n,
where 1(y) denotes the length of the shortest word for y . Write
S = {xi±1: i = 1, ... , rl and y = y1 y2 ... ym where yi E S. Now we con-
ider an n-tuple (S1, ..., 8n) of 2-element subsets of G where Si =

= Y1 Y2 ... Yj. Since G is a PC(2, n)-group,
there is such that S 1 S 2 ... ,S ~ - ~ n ,S Q( 1) S Q(2) ... ,S a(n) I .
Write g( i, j ) = 8u(i) 8u(i + 1) ... SQ(~ ) for i ~ j . Since x is of infinite order,

1) 1 and I are strictly increasing functions of i, j for
all 1. Let j be an integer for which u(j) + 1 ~ + 1 ). Note that

- x~o(j + 1) - 1 ~ or (x -1 )~‘~~, = X.7ru(j + 1, -1. Hence in N. So
= Nnu(j + 1&#x3E; -1. By the repeated applications of the above argu-

ment, we can assume that Ny = Ny’ , where l( y’ )  n. Hence N has fi-
nite index in G and so does C(wz) = C(w). In fact there is an integer m
such that G : C( w ) ~ I  m for all ~,u e G. Hence G is a BFC-group. Since G
is finitely generated, it is center-by-finite.

COROLLARY 3.9. A torsion-free PC(2)-group is abelian.

Acknowledgement. I would like to thank Dr. Chun for calling my
attention to this problem, and Dr. Rhemtulla for helpful conversa-
tions.
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