RENDICONTI

del
 SEMINARIO MATEMATICO della Università di Padova

P. ZANARDO
 U. ZANNIER
 Commutative domains large in their \mathfrak{M} adic completions

Rendiconti del Seminario Matematico della Università di Padova, tome 95 (1996), p. 1-9
http://www.numdam.org/item?id=RSMUP_1996__95__1_0
© Rendiconti del Seminario Matematico della Università di Padova, 1996, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

Commutative Domains Large in their \mathfrak{M}-Adic Completions.

P. Zanardo (*) - U. Zannier (**)

Introduction.

The topic of the present paper was inspired by a question proposed by A. Orsatti. Let R be a Dedekind domain, \mathfrak{M} a maximal ideal of R; let us denote by $\widehat{R}_{\mathfrak{M}}$ the completion of R in the \mathfrak{M}-adic topology, and by $\widehat{K}_{\mathfrak{M}}$, K, the fields of fractions of $\widehat{R}_{\mathfrak{R}}, R$, respectively. Orsatti's question was the following: if R is a Dedekind domain containing infinitely many prime ideals, is it true that the transcendence degree of $\hat{K}_{\mathfrak{B}}$ over K is infinite for (almost) all $\mathfrak{B} \in \operatorname{Spec}(R)$?

Subsequently, Orsatti himself found that a negative answer is given by the ring \boldsymbol{P} constructed by Corner in his celebrated paper [4]. Recall that \boldsymbol{P} is a domain contained in $\widehat{\mathbb{Z}}=\prod_{p} \widehat{\mathbb{Z}}_{p}$, such that $|\boldsymbol{P}|=2^{\mathrm{K}_{0}}$ and every ideal I of \boldsymbol{P} is principal, generated by an integer n; through an examination of Corner's construction, it is easy to check (see § 1) that, for all prime numbers p, the p-adic completion of \boldsymbol{P} is isomorphic to $\widehat{\mathbb{Z}}_{p}$, and, moreover, $\widehat{\mathbb{Q}}_{p}$ is always an algebraic extension of the field of fractions of \boldsymbol{P}.

In view of this property, \boldsymbol{P} is said to be large in its p-adic completion, for all p; more precisely, given a commutative domain R and a
(*) Indirizzo dell'A.: Dipartimento di Matematica Pura e Applicata, Via Belzoni 7, 35131 Padova, Italy. E-mail: pzanardo@pdmat1.unipd.it.
${ }^{(* *)}$ Indirizzo dell'A.: DSTR, Ist. Arch., S. Croce 191, 30135 Venezia, Italy. E-mail: zannier@udmi5400.cineca.it.

Lavoro eseguito con il contributo del MURST.
maximal ideal \mathfrak{M} of R, with $\bigcap_{n} \mathbb{M}^{n}=\{0\}$, we shall say that R is large in its \mathfrak{M}-adic completion $\widehat{R}_{\mathfrak{N}}$ if every element of $\widehat{R}_{\mathfrak{N}}$ is algebraic over R; here we note that $\hat{R}_{\mathfrak{R}}$ is not necessarily a domain, hence we cannot speak of $\widehat{K}_{\mathfrak{R}}$, in general.

These «large» domains are related, in some sense, with the problem of realizing torsion-free R-algebras as endomorphism algebras of R modules. Actually, we remark that the method of realization due to Corner [4], or the localized version due to Orsatti [8], both use the key Lemma 2.1 of [4], which needs the existence of $2^{\aleph_{0}}$ elements of $\widehat{K}_{\mathfrak{M}}$ algebraically independent over K. Hence we conclude that these methods of realization cannot work in the case of «large» domains.

Let us also recall that G. Piva in [9] called a Dedekind domain R admissible if the transcendence degree of $\widehat{K}_{\mathfrak{R}}$ over K is uncountable for every prime ideal $\mathfrak{\beta}$ of R; he was able to extend the methods of realization of Corner and Orsatti to a class of algebras over admissible Dedekind domains ([9], Theorem C). The negative answer to Orsatti's question shows that not all the Dedekind domains are admissible, in the sense of Piva.

In the local case, valuation domains R which are large in their \mathfrak{M} adic completions were investigated by Ribenboim [10]; we note that if \mathfrak{M} is the maximal ideal of a valuation domain R and $\bigcap_{n} \mathfrak{P}^{n}=\{0\}$, then R is automatically a discrete valuation ring of rank one (DVR). In his recent paper [7], Okoh found other results on large DVRs; in particular, his Proposition 1.1(a) is extended by Corollary 3 of the present paper. Nagata [6] was the first one to exhibit DVRs R non-complete and such that $\left[\hat{K}_{\mathfrak{N}}: K\right]$ is finite. Zanardo [11] and Arnold and Dugas [1] investigated torsion-free modules of finite rank over these kinds of rings, called Nagata valuation domains in [11], showing several peculiar results about direct decompositions and indecomposable modules.

In the present paper we investigate «large» commutative domains (not necessarily Dedekind) in the non-local case. Roughly speaking, we describe the two opposite situations.

If R is noetherian, non-local, and \mathfrak{M} is a maximal ideal of R, then $\hat{R}_{\mathfrak{R}}$ can be algebraic over R (e.g. when $R=\boldsymbol{P}$ as above), but in any case $\widehat{R}_{\mathfrak{M}}$ must contain elements algebraic over R of arbitrarily large degree (Theorem 2). In particular, when $\widehat{R}_{\mathfrak{M}}$ is a domain, $\left[\hat{K}_{\mathfrak{M}}: K\right]$ cannot be finite, as can happen in the local case.

On the other hand, without the hypothesis of noetherianity, we can have a non-complete domain R which is as large as possible in its completion, in the sense that its \mathfrak{M}-adic completion coincides with the localization $R_{\mathfrak{R}}$ of R at \mathfrak{M}; therefore $\widehat{K}_{\mathfrak{M}}=K$, in this case. Actually, we can
say much more (Theorem 7): given any domain T which is complete with respect to the \mathfrak{M}-adic topology induced by a maximal ideal \mathfrak{M} of T, there exist non-complete subrings R of T, such that $T=R_{\mathfrak{R}}$, where $\mathfrak{R}=\mathfrak{M} \cap R$, and T is the \mathfrak{N}-adic completion of R.

Thus Theorem 7 shows that there are plenty of domains large in their completions, if we do not ask noetherianity.

We are grateful to A. Orsatti for helpful discussions.

1. - In the sequel the symbols $R, \widehat{R}_{\mathfrak{N}}, K, \widehat{K}_{\mathfrak{R}}$ etc. will have the same meaning as in the introduction; of course, the symbol $\widehat{K}_{\mathfrak{N}}$ will be used only when $\hat{R}_{\mathfrak{N}}$ is a domain. General references about \mathfrak{M}-adic completions may be found in [2],[6] and [3], Ch. 3. When we speak of \mathfrak{M}-adic topology on R we shall always mean that \mathfrak{M} is a maximal ideal of R; we recall that, if \mathfrak{M} is a maximal ideal of R and R is complete in the \mathbb{M}-adic topology, then R is automatically a local ring (see e.g. [3]). As usual, if R is a ring and \mathfrak{B} is a prime ideal of R, we denote by R_{\Re} the localization of R at \mathfrak{B}; thus we agree with the use of the symbol $\widehat{R}_{\mathfrak{M}}$, since complete implies local, when \mathfrak{M} is maximal.

We start by showing the existence of a principal ideal domain R, with infinite spectrum, such that $\widehat{K}_{(p)}$ is an algebraic extension of K for all prime elements p of R. We remark again that the idea that the following example due to Corner enjoyes this property is due to Orsatti.

Example 1. Let \boldsymbol{P} be the subring of $\hat{\mathbb{Z}}=\prod_{p} \widehat{\mathbb{Z}}_{p}$ constructed in Lemma 1.5 of Corner's paper [4]. We recall the properties of \boldsymbol{P} which we need: it is an integral domain, and a pure subring of $\widehat{\mathbb{Z}}$; every ideal of \boldsymbol{P} is principal, generated by an integer n; moreover the only integers which are invertible in \boldsymbol{P} are ± 1; therefore, in particular, $\operatorname{Spec}(\boldsymbol{P})$ is infinite. For all prime numbers p, let $\pi_{p}: \widehat{\mathbb{Z}} \rightarrow \widehat{\mathbb{Z}}_{p}$ be the canonical projection; note that $\pi_{p}(\boldsymbol{P})$ is isomorphic to \boldsymbol{P} for all p : in fact any nonzero element x of \boldsymbol{P} is of the form $x=n \varepsilon$, with $n \in \mathbb{Z}$ and ε a unit of \boldsymbol{P}, so that $\pi_{p}(\varepsilon)$ is necessarily a unit of \widehat{Z}_{p}, and therefore $\pi_{p}(x)=n \pi_{p}(\varepsilon)$ cannot be zero. Let us now show that \widehat{Z}_{p} is the p-adic completion of $\pi_{p}(\boldsymbol{P}) \cong \boldsymbol{P}$. From $\mathbb{Z} \subseteq \pi_{p}(\boldsymbol{P})$ it follows that $\pi_{p}(\boldsymbol{P})$ is dense in $\widehat{\mathbb{Z}}_{p}$. It is then enough to show that the p-adic topology on $\pi_{p}(\boldsymbol{P})$ coincides with the induced topology of $\widehat{\mathbb{Z}}_{p}$, i.e. $\pi_{p}(\boldsymbol{P}) \cap p^{m} \widehat{\mathbb{Z}}_{p}=p^{m} \pi_{p}(\boldsymbol{P})$, for all $m \in \mathbb{N}$. Recall that \boldsymbol{P} is pure in $\hat{\mathbb{Z}}$, whence $\boldsymbol{P} \cap p^{m} \widehat{\mathbb{Z}}=p^{m} \boldsymbol{P}$ for all m. Let $\pi_{p}(x)=$ $=p^{m} z$, with $x \in \boldsymbol{P}$ and $z \in \widehat{\mathbb{Z}}_{p}$; then $x=p^{m} z+\eta$, with $\eta \in \prod_{q \neq p} \hat{\mathbb{Z}}_{q}$; we have $\eta=p^{m} \delta$, since $\widehat{\mathbb{Z}}_{q}=p \widehat{\mathbb{Z}}_{q}$ for all $q \neq p$; thus $x \in p^{m} \widehat{\mathbb{Z}} \cap \boldsymbol{P}=p^{m} \boldsymbol{P}$
and so $\pi_{p}(x) \in p^{m} \pi_{p}(\boldsymbol{P})$. This argument shows that $\pi_{p}(\boldsymbol{P}) \cap p^{m} \widehat{\mathbb{Z}}_{p}=$ $=p^{m} \pi_{p}(\boldsymbol{P})$, as desired.

It remains to check that $\widehat{\mathbb{Q}}_{p}$ (the field of fractions of $\widehat{\mathbb{Z}}_{p}$) is an algebraic extension of K, the field of fractions of $\pi_{p}(\boldsymbol{P})$. But this follows directly from Corner's construction: $\pi_{p}(\boldsymbol{P})$ contains a transcendence basis of $\widehat{\mathbb{Q}}_{p}$ over \mathbb{Q}, for all p (see [4], p. 696), and therefore $\widehat{\mathbb{Q}}_{p}$ must be algebraic over K.

Let us remark that, a priori, in the above example it could be possible that $\widehat{\mathbb{Q}}_{p}=K$ for some p. This possibility is excluded by our next result (see also Prop. 1.1 of [7]).

Recall that a ring R is said to be a Krull ring if it satisfies the three following conditions (see [6], § 33, p. 115):
(i) for every minimal prime ideal \mathfrak{B}, R_{\Re} is a DVR;
(ii) $R=\cap R_{\Re}$, the intersection being taken over all minimal prime ideals;
(iii) any nonzero element of R lies in only a finite number of minimal prime ideals.

If R is a noetherian domain, then its integral closure \bar{R} (in the field of fractions K of R) is not necessarily noetherian (see [6], Example 5, p. 207), but it is in any case a Krull ring ([6], T. 33.10, p. 118). This result will be needed in the following Theorem 2.

If $R \subset T$ are rings, not necessarily domains, and $u \in T$ is algebraic over R, then the degree of u will be the minimal degree of a nonzero polynomial $f(X) \in R[X]$ such that $f(u)=0$.

ThEOREM 2. Let R be a non local noetherian domain, and let \mathfrak{M} be a maximal ideal of R. Then for all integers $n>0$ there exists an element $u \in \widehat{R}_{\mathfrak{M}}$ which is algebraic over R, of degree greater than n, and such that $R[u]$ is a domain.

Proof. Since \mathfrak{M} is a maximal ideal and R is not local, there exists a non-unit $\mu \in R$ such that $\mu \equiv 1(\bmod \mathfrak{M})$. Now, for all prime numbers q different from the characteristic of R, the polynomial $X^{q}-1$ in $(R / \mathcal{M})[X]$ has 1 as a simple root; therefore, by Hensel's Lemma, the polynomial $X^{q}-\mu \in R[X]$ has a root $\eta_{q} \in \widehat{R}_{\mathfrak{m}}$. Let us now fix a positive integer $n>0$; we shall show that there exists a prime number $p>n$, different from the characteristic, such that $X^{p}-\mu$ is irreducible over K; then $u=\eta_{p} \in \widehat{R}_{\mathfrak{M}}$ will be the required element. By contradiction, let us assume that $X^{q}-\mu$ is reducible over K for all large enough primes q; it is then known from field theory that μ is a q-th power in K (see e.g. [5]): $\mu=\theta_{q}^{q}$, for some $\theta_{q} \in K$. Since $X^{q}-\mu \in R[X]$, we then obtain
that the θ_{q} lie in the integral closure \bar{R} of R in K. Since R is noetherian, \bar{R} is a Krull ring by the above recalled result. Now, μ is not a unit of \bar{R}, since it is not a unit of R, and therefore μ is contained in a minimal prime ideal \Re of \bar{R}, by (ii); moreover $\bar{R}_{\mathfrak{B}}$ is a DVR by (i). We conclude that μ is not a unit of $\bar{R}_{\mathfrak{B}}$, but μ is a q-th power in $\bar{R}_{\mathfrak{B}}$ for all q large enough, since the θ_{q} lie in $\bar{R} \subseteq \bar{R}_{\Re}$; this fact is clearly impossible in a DVR, and yields the required contradiction.

It remains to show that $R[u]$ is a domain. Let us consider the ideal \mathscr{r} generated by $X^{p}-\mu$ in $R[X]$; since $X^{p}-\mu$ is monic, the division algorithm shows that

$$
\mathfrak{J K}[X] \cap R[X]=\mathfrak{J}
$$

whence J is a prime ideal, consisting of those $f(X) \in R[X]$ such that $f(u)=0$. We conclude that $R[u] \cong R[X] / \mathcal{Z}$ is a domain, as desired.

Corollary 3. Let R be a non local noetherian domain, \mathfrak{M} a maximal ideal of R such that $\widehat{R}_{\mathfrak{R}}$ is a domain; then $\widehat{K}_{\mathfrak{M}}$ is neither a finite nor a pure transcendental extension of K.

It is clear that the hypothesis that R is not local is essential in the preceding theorem (otherwise R could be complete in the \mathfrak{M}-adic topology). However we also remark that Nagata [6] proved the existence of a non complete DVR R such that the degree $\left[\hat{K}_{\mathfrak{M}}: K\right.$] is finite; moreover Ribenboim [10] showed that a DVR satisfying this property must be of prime characteristic, and $\widehat{K}_{\mathfrak{M}}$ must be a purely inseparable extension of K (these conditions are of course satisfied by Nagata's example).

This situation is very far from the one examined in Theorem 2: from its proof we actually infer that, when $\hat{R}_{\mathfrak{M}}$ is a domain, $\widehat{K}_{\mathfrak{M}}$ is never a purely inseparable extension of K.
2. - The main purpose of this second section is to show the somewhat surprising fact of the existence of domains R non-complete in the \mathfrak{M}-adic topology, whose completion is $R_{\mathfrak{m}}$.

We shall denote by χA the characteristic of a ring A; given a domain T and a maximal ideal \mathfrak{M}, we denote by $\pi_{\mathfrak{R}}$ the canonical projection of T onto the residue field T / \mathbb{M}.

Lemma 4. Let T be a domain and \mathfrak{M} a maximal ideal of T; let R be a subring of T and let $\mathfrak{M}=\mathfrak{M} \cap R$. Then \mathfrak{R} is a maximal ideal of R if $\pi_{\mathfrak{M}}(R)=T / \mathfrak{M}$.

Proof. Let $a \in R \backslash \mathfrak{N}$; since \mathfrak{M} is maximal in T, there exists $\beta \in T \backslash \mathfrak{M}$ such that $a \beta \equiv 1(\bmod \mathfrak{M})$. Since $\pi_{\mathfrak{M}}(R)=T / \mathfrak{M}$, we have $\beta=b+m$, with $b \in R$ and $m \in \mathfrak{M}$; this yields $a b-1 \in \mathfrak{M} \cap R=\mathfrak{N}$. Since the choice of a was arbitrary, we get the desired conclusion.

Lemma 5. Let T be a local domain with maximal ideal \mathfrak{M}. Let R be a subring of T such that $\mathfrak{N}=\mathfrak{M} \cap R$ is maximal in R and $T=R_{\Re}$. Then $\mathfrak{N}^{n}=R \cap\left(\mathfrak{N}^{n}\right)$ for all $n \in \mathbb{N}$, i.e. the \mathfrak{N}-adic topology of R coincides with the topology induced on R by the \mathbb{M}-adic topology of T.

Proof. It is enough to prove that $\mathfrak{N}^{n} \supseteq R \cap\left(\mathfrak{M}^{n}\right)$ for all n. Since $T=R_{\mathfrak{R}}$, then $\mathfrak{M}=\mathfrak{N} R_{\Re}$, hence the above inclusion holds if we show that $r=m / s$, with $r \in R, s \in R \backslash \mathfrak{N}, m \in \mathfrak{N}^{n}$, implies $r \in \mathfrak{N}^{n}$. Equivalently, $r s \in \mathfrak{N}^{n}$ and $s \in R \backslash \mathfrak{N}$ yields $r \in \mathfrak{R}^{n}$. By induction on n, we can assume that $r \in \mathfrak{N}^{n-1}$; moreover, from \mathfrak{N} maximal in R and $s \notin \mathfrak{N}$, it follows that $s t=1+\xi$, for suitable $t \in R$ and $\xi \in \mathfrak{N}$. Therefore $r+r \xi=r s t \in \mathfrak{R}^{n}$; since $r \in \mathfrak{R}^{n-1}$, then $r \xi \in \mathfrak{N}^{n}$, whence $r \in \mathfrak{N}^{n}$, too, as desired.

Lemma 6. Let R be a domain, \mathfrak{N} a maximal ideal of R, and let us consider the localization R_{\Re} endowed with the \mathfrak{M}-adic topology, where $\mathfrak{M}=\mathfrak{N} R_{\mathfrak{M}}$. Then R is dense in $R_{\mathfrak{R}}$.

Proof. We must show that

$$
\left(t+\mathfrak{M}^{n}\right) \cap R \neq \emptyset \quad \text { for all } t \in R_{\Re}, \quad n \in \mathbb{N}
$$

The element t is of the form $t=r / s$, with $r \in R$ and $s \in R \backslash \Re$. Multiplying both r and s by an inverse of $s \bmod \mathfrak{N}$ we may assume that $s=1-v$, where $v \in \mathfrak{N}$. Then

$$
t=r /(1-v) \equiv r\left(1+v+\ldots+v^{n-1}\right) \quad \bmod \mathfrak{M}^{n}
$$

where $r\left(1+v+\ldots+v^{n-1}\right) \in R$, as desired.
We are now in the position to prove the main result of this section; it shows a general property enjoyed by domains; however, we are mainly interested in the case when T is complete in its \mathfrak{M}-adic topology.

THEOREM 7. Let T be a local domain, not a field, with maximal ideal \mathfrak{M}. Then there exists a subring R of T satisfying the following: $\mathfrak{N}=\mathfrak{M} \cap R$ is a maximal ideal of R, R is not local and $T=R_{\mathfrak{R}} ; R$ is not complete in the \mathfrak{N}-adic topology. If T is complete in the \mathfrak{M}-adic topology, then it is the completion of R in its \mathfrak{N}-adic topology.

Proof. We start choosing a suitable $x \in T \backslash \mathfrak{M}$. We must distinguish the cases of equal and unequal characteristics. If $\chi(T)=0$ and $\chi(T / \mathcal{M})=p>0$, we set x to be a prime number distinct from p; of course, $x \notin \mathcal{M}$, since $p \in \mathcal{M}$. If $\chi(T)=\chi(T / \mathcal{M})$, then T contains a field L which is either \mathbb{Q} or $\mathbb{Z} / p \mathbb{Z}$. Now, if z is any nonzero element of \mathfrak{M}, then z is transcendental over L : in fact, if z is algebraic over L; then z is a unit in $L[z] \subseteq T$, impossible. Note that $\mathfrak{M} \neq 0$, since T is not a field, by hypothesis. Let us set $x=1+z$; then x is transcendental over L and $x \notin \mathfrak{M}$.

Let us now consider the family \mathfrak{F} of the subrings B of T satisfying the following conditions:
(i) $x \in B$;
(ii) $1 / x \notin B$.

The family \mathscr{F} is nonempty; if $\chi(T) \neq \chi(T / \mathfrak{M})$, then $\mathbb{Z} \in \mathscr{F}$; if $\chi(T)=$ $=\chi(T / \mathfrak{M})$, then $L[x] \in \mathscr{F}$ (recall that x is transcendental over L). Moreover \mathfrak{F} is clearly inductive, with respect to the inclusion order, and so \mathfrak{F} contains a maximal element R. Our purpose is to prove that R satisfies the requirements of our statement, from which we shall obtain the desired conclusion. Since $x \in R$ is not a unit of R, let us fix a maximal ideal \mathfrak{B} of R which contains x; the localization $R_{\mathfrak{B}}$ is not necessarily a subring of T, but it is contained in the field of fractions of T. It is useful to note that \mathfrak{F} does not contain the ideal $\mathfrak{R}=\mathfrak{M} \cap R$: in the eterocharacteristic case $p \in \mathfrak{R} \backslash \mathfrak{B}$, since $a x+b p=1$, for suitable $a, b \in \mathbb{Z} \subset R$; in the equicharacteristic case we have, by construction, $x-1 \in \mathfrak{M} \cap R \backslash \mathfrak{P}$.

Let us show various properties of R.

A) R is integrally closed in T.

By contradiction, let $u \in T \backslash R$ be integral over R. Then, in view of the maximality of R in $\mathscr{F}, 1 / x \in R[u]$. This implies that also $1 / x$ is integral over R; but

$$
a_{0}+a_{1}(1 / x)+\ldots+(1 / x)^{k}=0 \quad \text { with } a_{i} \in R,
$$

yields $1 / x \in R$, impossible.
B) If $z \in T \backslash \mathfrak{M}$, then either $z \in R$ or $1 / z \in R$.

Suppose that $z \notin R$; then $1 / x \in R[z]$, by the maximality of R. From

$$
\begin{equation*}
1 / x=b_{0}+b_{1} z+\ldots+b_{h} z^{h}, \quad b_{i} \in R \tag{1}
\end{equation*}
$$

we get

$$
\begin{equation*}
\left(x b_{0}-1\right)(1 / z)^{h}+x b_{1}(1 / z)^{h-1}+\ldots+x b_{h}=0 \tag{2}
\end{equation*}
$$

Since $x b_{0}-1$ is a unit of R_{\Re}, (2) implies that $1 / z$ is integral over R_{\Re}; let us also recall that $1 / z \in T$, since T is local. If now $1 / z \notin R$, we must have $1 / x \in R[1 / z]$, and so $1 / x$ is integral over R_{\Re}, impossible, since $x \in \mathfrak{ß} R_{\Re}$. Thus $1 / z \in R$, as desired.
C) If $r \in R$ and $r \notin \mathfrak{P} \cup \mathfrak{M}$, then $1 / r \in R$.

By contradiction, suppose that $1 / r \notin R$. We have $R[1 / r] \subseteq T$, since $r \notin \mathfrak{M}$ implies $1 / r \in T$, and therefore R maximal implies

$$
\begin{equation*}
1 / x=c_{0}+c_{1}(1 / r)+\ldots+c_{n}(1 / r)^{n}, \quad c_{i} \in R \tag{3}
\end{equation*}
$$

from (3) we readily get $r^{n} \in x R \subseteq \mathfrak{P}$, whence $r \in \mathfrak{P}$, against the hypothesis. (Note that C) implies that \mathfrak{B} and \mathfrak{N} are the unique maximal ideals of R).
D) $\pi_{\mathfrak{M}}(R)=T / \mathfrak{M}$, whence $\mathfrak{N}=\mathfrak{M} \cap R$ is a maximal ideal of R, in view of Lemma 4.

Let us choose an arbitrary nonzero $\eta \in T / \mathcal{M}$, and verify that $\eta \in$ $\in \pi_{\mathfrak{M}}(R)$. Let $y \in T \backslash \mathfrak{M}$ be such that $\pi_{\mathfrak{M}}(y)=\eta$. If $y \in R$ we are done. Otherwise, $y \notin R$ implies $1 / y \in R$, in view of property C). From property C) we derive that $1 / y \in \mathfrak{B}$, since $1 / y \notin \mathfrak{M}$ and $y=(1 / y)^{-1} \notin R$. Choose now $m \in \mathfrak{N} \backslash \mathfrak{P}$; such m exists, as observed above. Then $1 / y+m \in R$ and $1 / y+m \notin \mathfrak{M} \cup \mathfrak{B}$, and therefore C) implies $(1 / y+m)^{-1}=y /(1+$ $+m y) \in R$, whence

$$
\pi_{\mathfrak{M}}(y / 1+m y)=\pi_{\mathfrak{M}}(y) \pi_{\mathfrak{M}}(1+m y)^{-1}=\pi_{\mathfrak{M}}(y)=\eta \in \pi_{\mathfrak{M}}(R)
$$

as desired.
E) $T=R_{\Re}$.

Let us observe that B) implies that $T \backslash \mathfrak{M} \subseteq R_{\mathfrak{M}}$: in fact if $z \in T \backslash M$ and $z \notin R$, then $1 / z \in R$, and $1 / z \notin \mathfrak{M} \cap R=\mathfrak{M}$; therefore $(1 / z)^{-1}=z \in R_{\mathfrak{N}}$. Moreover, if $z \in \mathfrak{M}$ and $z \notin R$, then $1+z \in T \backslash \mathfrak{M} \subseteq R_{\Re}$, whence $z \in R_{\Re}$. We conclude that $T \subseteq R_{\Re}$, as we wanted.

It is now easy to reach the desired conclusions: we know that $\mathfrak{N}=$ $=\mathfrak{M} \cap R$ is a maximal ideal of R and that $T=R_{\mathfrak{R}} ; R$ is not complete in the \mathfrak{N}-adic topology, because it is not a local ring ($x \notin \mathfrak{N}$ and $1 / x \notin R$); the \mathfrak{N}-adic topology of R coincides with the topology induced by the
\mathfrak{M}-adic one of T, since we are in the position to apply Lemma $5 ; R$ is a dense subset of T in the M-adic topology, as a consequence of Lemma 6. Therefore, if T is complete, it must be the completion of R in the \mathfrak{R}-adic topology.

We remark that the domain R constructed in the above theorem is never noetherian, as an immediate consequence of Theorem 2.

REFERENCES

[1] D. Arnold - M. Dugas, Indecomposable modules over Nagata valuation domains, to appear.
[2] M. Atiyah - I. Macdonald, Introduction to Commutative Algebra, Addi-sont-Wesley (1969).
[3] N. Bourbaki, Algèbre Commutative, Masson, Paris (1985).
[4] A. L. S. Corner, Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc. (3), 13 (1963), pp. 687-710.
[5] I. Kaplansky, Fields and Rings, University of Chicago Press, Chicago (1972).
[6] M. Nagata, Local Rings, Wiley, Interscience (1962).
[7] F. Окон, The rank of a completion of a Dedekind domain , Comm. in Algebra, 21 (12) (1993), pp. 4561-574.
[8] A. Orsatti, A class of rings which are the endomorphism rings of some tor-sion-free abelian groups, Ann. Scuola Norm. Sup. Pisa, 23 (1969), pp. 143-53.
[9] G. PIvA, On endomorphism algebras over admissible Dedekind domains, Rend. Sem. Mat. Univ. Padova, 79 (1988), pp. 163-72.
[10] P. Ribenboim, On the completion of a valuation ring, Math. Ann., 155 (1964), pp. 392-396.
[11] P. Zanardo, Kurosch invariants for torsion-free modules over Nagata valuation domains, J. Pure Appl. Algebra, 82 (1992), pp. 195-209.

Manoscritto pervenuto in redazione il 31 gennaio 1994.

