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On Deficient Products in Infinite Groups (*).

MARCEL HERZOG(**) - FEDERICO MENEGAZZO(***)

1. Introduction.

In [2] groups with the deficient squares property were completely
characterized. It was shown in [3] that a group G has the deficient
squares property if and only if it does not contain an infinite fully-inde-
pendent subset.

In this paper we investigate infinite groups with deficient products
properties. To make this more precise, let G be an infinite group and let
n, k E=- N, k -&#x3E; 2. A subset of G with n elements will be called an n-set of
G . We say that G E DP( n, k) if all k-tuples Xl , X2 , ... , Xk of n-sets in G
satisfy

In particular, G E DP(n) stands for G E DP(n, 2). Finally, we say that
G E DP if G E DP(n, k) for some positive integers n, k E N, k &#x3E; 2. Our
main results are expressed in the following theorems.

THEOREM 1. Let G be an infinite, group and Let n e N. Then
G E DP( n ) if and only if G is abelian.

This theorem follows immediately from

(*) This article was written during the first author’s visit to the University
of Padova. He would like to thank the Department of Mathematics for the invita-
tion and for their kind hospitality.

(**) Indirizzo della.: School of Mathematical Sciences, Raymond and Be-
verly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv,
Israel.

(***) Indirizzo dell’A.: Universita di Padova, Dipartimento di Matematica
Pura e Applicata, Via Belzoni 7, 35131 Padova, Italy.



2

THEOREM 2. Let G be an infinity non-abelian groups. Then G con-
tains two infinite product-independent subsets.

Two subsets A and B of G are product-independent if whenever
a, a’ e A and b, b’ E B, then ab ~ b’ a’ and ab = a’ b’ or ba = b’ a’ only
if a = a’ and b = b’.
We say that a group G satisfies G E FIZ if its center is of finite in-

dex. With respect to the DP property we prove

THEOREM 3. Let G be an infinite, group. Then G E DP if and only
if G E FIZ.

Theorem 3 follows easily from

THEOREM 4. Let G be an infinite, group. Then G contains No mu-
tually product-independent infinity subsets if and only if G ~ FIZ.

The proofs of Theorems 1, 2, 3 and 4 will be presented in Section 2.
It is easy to see that similar proofs yield the following generaliza-
tions of Theorems 1 and 3. In order to state these generalizations,
we need some additional notation. For each k e N, k &#x3E; 2 we define

((n), k) = (nl , n2 , ... , nk ), where nl , n2 , ... , ~ ~ N’ We say that

G E DP((n), k) if all k-tuples Xl , X2 , ... , Xk of subsets of G with

X 1 I~ , !X2!, ..., lXk 1) = (nl, n2, ..., nk) satisfy

Finally, we say that G E DP * if G E DP((n), k) for some ((n), k), k ;::: 2.
The generalized theorems are:

THEOREM 1’. Let G be an infinite, group. Then G E DP((n), 2) if
and only if G is abelian. ,

THEOREM 3’. Let G be an infinity group. Then G E DP* if and
only if G E FIZ.

Section 3 deals with a related, but different, topic. Following
[4] we say that G E Pn if XY = YX for all n-sets X, Y in G and
G E Pn if every infinite set of distinct n-sets of G contains a pair
X, Y of distinct members such that XY = YX. In [4] it was shown
that G E Pn if and only if G is abelian and in [5] the second author
showed that G E P) for n &#x3E; 1 if and only if G is abelian. Theorems
1, 3, 1’ and 3’ are generalizations of the first mentioned result
and we extend the second result by considering groups G E P * ,
which satisfy the property that every infinite set of distinct finite
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subsets of G of specified sizes not less than two contains a pair
of distinct members X, Y such that XY = YX. We prove

THEOREM 5. Let G be an infinity group. Then G E P * if and only
if G is abelian.

The following notation and definitions will be used in this paper.
The letter G denotes an infinite group and N denotes the set of positive
integers. The letters i, j , l, m, n, -~ a, p, z will denote positive integers.
A subset S of G will be called a Sidon set if whenever x, y, z, w E S and

I ix, Y, z, w ~ ~ ~ 3, then xy ~ zw.

2. Groups with deficient products.

In this section we shall prove Theorems 1, 2, 3 and 4. Our proofs re-
ly on the following important results of B. H. Neumann and of Babai
and S6s.

THEOREM A (B. H. Neumann [6]). Let G be a groups. Then G E FIZ

if and only if G does not contain an infinite, subset U satisfying uv ~ vu
whenever u, v E U and u ~ v.

THEOREM B (L. Babai and V. T. S6s [1]). If U is an infinity subset
of a group G, then U contains an infinite Sidon set.

We proceed with our

LEMMA 1. Let G be an infinity group. and let k denote a positive
integer or No. Then there exist k infinite sequences Ai = (a’, a2 , ... ),
i = 1, 2, ... , k of elements of G such that

and

for X # a if and only if i =1~ and j = l.

If G ~ FIZ, we may choose the Ai in such a way, that in addition to the
above mentioned properties they will satisfy

PROOF. Suppose, first, that G ~ FIZ. By Theorem A there exists
an infinite sequence B = (gl , g2 , ... ) of distinct elements of G such that
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gi g~ ~ g3 g~ if i ~ j . By Theorem B there exists an infinite subsequence
U = (u1, U2, ...) of B such that Ui Uj = uk ul implies that either i =1~ and
j 1 (i.e. or i = j and 1 (i.e. U? = U2). Partition the set
U into k disjoint infinite subsequences Ai = a,2 , ...), i = 1, 2, ... , 1~.
Then (2.1), (2.2) and (2.3) hold. The proof in the case G ~ FIZ is

complete.
If G E FIZ, then Z(G) is of infinite order and by Theorem B Z(G)

contains an infinite sequence U = U2, ... ) of distinct elements such
that = implies that either i = k and j = 1 (i.e. = or

i = j and k = l (i.e. u2 U2) or i = l and j = k (i.e. uiuj = ujui). Con-
struct the sequences Ai (a’, ... ) for i = 1, 2, ..., k as before. Then
(2.1) and (2.2) hold, as claimed.

We are ready now to prove Theorem 2.

PROOF OF THEOREM 2. If FIZ, then Theorem 2 follows from
Lemma 1, with = 2. So suppose that G E FIZ. Then Z(G) is infinite,
G ’ is finite and Z( G ) /H is infinite, where H = Z(G) f 1 G ’ . Let T be a
transversal of H in Z(G) and let U be an infinite subset of T such that

E C/} is a Sidon set in Z(G)/H. This means that if u, v, w, t E U
satisfy uvH = wtH then I vH, wH, tH ~ ~ I  3, hence also

I v, w, t ~ ~ I  3. Now split U into two infinite disjoint subsets R and
S; fix elements x, y E G with xy ~ yx and finally set A = xR, B = yS. If
a = xr, a’ = xr’, b = ys and b’ = ys’, with r,r’eR and s, s’ E S,
satisfy ab = b ’ a ’, then xrys = ys ’ xr’, which implies [ x, y] rs = s ’ r’
and [x, y] E H. But then rsH = s’ r’ H and it follows that

s, ~, ~ }~ I  3 and r = r’, s = s’, which implies [x, y] = 1, a con-
tradiction. Thus whenever a, a’ E A and b, b’ E B, then ab # b’ a’. Sup-
pose, now, that ab = a ’ b ’ (or ba = b ’ a ’ ). Then xrys = xr’ ys ’
(or ysxr = ys’ xr’ ), which implies rs = r’ s ’ (or sr = s ’ r’ ) and as above
r = r’ , s = s ’, yielding a = a ’ and b = b ’ . Hence A and B are infinite
product-independent subsets of G and the proof of Theorem 2 is

complete.

Theorem 1 follows immediately from Theorem 2.
We proceed with a proof of Theorem 4, from which Theorem 3 fol-

lows easily.

PROOF OF THEOREM 4. If G ~ FIZ, then G contains No mutually
product-independent infinite subsets by Lemma 1. On the other hand,
if G E FIZ, then G : Z(G) I = n for some n E N. Let AI, A2 , ... , An + 1
be infinite subsets of G. Then there exist s E G and i, j e N such that
1  i, j  n + f1 sZ(G) # 0 and Aj f1 sZ(G) # 0. It follows that
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Ai and Aj are not product-independent, and in particular G does not
contain No mutually product-independent infinite subsets.

Finally we prove Theorem 3, in which the DP-groups are character-
ized.

PROOF OF THEOREM 3. Suppose, first, that G E FIZ and

I G: Z(G) I = m. Then G E DP( 1, m + 1 ) since given m + 1 elements
gl , 92, ... , gm + 1 of G, at least two of them belong to the same coset of
Z(G) in G and therefore commute with each other. This implies
that

and hence G E DP( 1, m + 1), as claimed. But this implies that G E DP,
thus completing the proof in one direction.

Suppose, now, that G e DP. Then G E DP(n, k) for some positive in-
tegers n, k with k ~ 2. It follows immediately by Theorem 4 that
G E FIZ.

3. Sequences with equal products.

In this section we shall prove Theorem 5.

PROOF OF THEOREM 5. If G is abelian then clearly G E P *. So sup-
pose that G E P * and G is non-abelian. We shall reach a contradiction
from our assumptions. Let (nl , n2 , ...) be an infinite sequence of inte-
gers greater or equal to two. Pick x, y E G such that xy ~ yx.

If G E FIZ then by Lemma 1 applied to G and k = No, the subse-
quences Ui = (aÏ, an,) of the infinite sequences Ai =
= (aÏ, ... ), i = 1, 2, ... satisfy Ui Uj f1 = 0 for i = j and hence
G ~ P *, a contradiction.

So suppose that G E FIZ. Then Z(G) is infinite and by Lemma 1 ap-
plied to Z(G) and k = 3, there exist three disjoint infinite sequences

a2 , ... ), ( bl , b2 , ... ) and ( tl , ...) of distinct elements of Z( G ) such
that Define the following infinite sequence of
sequences:
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and so on. Suppose that for some i ~ j we have = Since

tk , al , bm E Z(G) for all k, x, y, Z(G) and we

must have which implies xy = yx, a contradiction.
Thus G ~ P *, a final contradiction.
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