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Even Canonical Surfaces with Small K2 - II.

KAZUHIRO KONNO (*)

Introduction.

This is the second part of a study of even canonical surfaces which
we began in [12] (referred to as Part I). Let S be a canonical surface,
and let 4K: denote the canonical map. We put 
and call it the canonical image. In Part I, we considered even canonical
surfaces S with K2  4x(os) - 16 and showed that X cannot be cut out
by hyperquadrics. More precisely, the irreducible component of the
quadric hull Q(X) of X containing it is of dimension 3, answering affir-
matively to a conjecture of Reid [14, p. 541] in the case of regular even
surfaces.

The purpose of this part is to list up even canonical surfaces with
K2 = 4x(ns ) - 16 whose canonical image is cut out by hyperquadrics.
Hence, we need not worry about surfaces with a pencil of trigonal
curves or plane quintic curves by [Part I, Theorem 8.3]. By the nature
of the problem, we study the semi-canonical ring and write down ex-
plicitly the defining equation of a birational model.
We show that, when q &#x3E; 0, S has a pencil of trigonal curves and the

irreducible component of Q(X) containing X is of dimension 3. This in
particular implies that Reid’s conjecture is also true for even surfaces
with q = 1. When q = 0, we find the following types of surfaces whose
canonical image is cut out by hyperquadrics:

- Some weighted complete intersections (Theorems 3.1, 4.1, 8.1).
- Hyperquartic sections of normal Del Pezzo threefolds (Theo-

rem 3.1).

(*) Indirizzo dell’A.: Department of Mathematics, Faculty of Science, Osaka
University, 1-16 Machikaneyama, Toyonaka, Osaka 560, Japan.

E-mail address: konno@math.wani.osaka.u.ac,jp.
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- Surfaces with a pencil of non-hyperelliptic curves of genus 7
whose general member has a gl (Theorem 5.1).

- Bi-K3 surfaces, i.e., double coverings of K3 surfaces (Theo-
rem 7.3).

- Surfaces with a pencil of non-hyperelliptic, non-trigonal
curves of genus 5 (Theorem 8.1).

Among them, the last two are the majority in the sense that pg is
unbounded. Another point to be noticed is that the canonical image is
projectively normal.

We hope that our experiments in this series of works give an evi-
dence for the validity of Reid’s conjecture [14] and illustrate what hap-
pens on Reid’s line K2 = 4pg - 12. The author would like to thank Pro-
fessor T. Ashikaga for stimulating discussions.

1, Classification by the semi-canonical map.

Let S be a nonsingular projective surface defined over the complex
number field C. It is called an even surface if the second Stiefel-Whit-
ney class vanishes [9]. It is called a canonical surface if it is minimal
and the rational map associated with the canonical linear system I
induces a birational map of S onto the image [9]. Throughout the paper,
we denote by S an even canonical surface with K 2 = 4x(ns) - 16. Let L
be a semi-canonical bundle, i.e., a line bundle on S satisfying 2L = K.
We call the rational map 0 L associated with L ~ I the semi-canonical map
of S. Put n = h°(L) - 1.

PROPOSITION 1.1. Let S be an even canonical surface with K2 =
4n - 4andthesemi-canonicalmapØL: 

satisfies one of the following:

(1) 0 L induces a birational map of S onto its image.
(II) OL induces a holomorphic map of degree 2 onto a surface of

degree 2n - 2 in pn which is not birationally equivalent to a ruled
surface.

(III) OL induces a rational map of degree 3 onto a ruled
surface.

(IV) ~L induces a holomorphic map of degree 4 onto a surface of
degree n - 1 in P n .

(V) ~L is composed of a nonhyperelliptic pencil of genus 3
or 4.
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Furthermore, L2 = 4n - 4 and H’(L) = 0 hold when S is of type (I),
(II) or (IV). When S is of type (II) or (IV), free from base
points.

PROOF. Since S is an even surface, L2 is a positive even integer.
Hence, there exists an integer k which satisfies L 2 = 4n - 2k. By the
Riemann-Roch theorem, we have

Since 4L 2 = K2 = 4X - 16, we have X = 4n - 2k + 4. It follows from
( 1.1 ) that k = + 2 ~ 2. Hence we have L2 :s:; 4n - 4. Notice that
we have if L2=4n-4.

First, assume that 0 L is not composed of a pencil. Put V = ~ L (S)
and consider 0 L as a rational map of S onto V. Since V is a nondegener-
ate surface in pn, we have deg V;::: n - 1 and

Since L2 :s:; 4 n - 4, we get 4. When deg OL = 1, we have L 2 ~
~ 4n - 6 by [Part I, Lemma 2.1]. If L 2 = 4n - 6, then, as we showed in
[Part I, Lemma 2.3], the numerical characters of S must satisfy K2 =
= 4pg - 16 and q = 0, which is absurd. Hence L 2 = 4n - 4. When
deg ø L = 2, we have deg V ~ 2n - 2. If deg V  2n - 2, it is well-known
that V is birationally equivalent to a ruled surface (see, e.g. [1]), and it
follows that S has a pencil of hyperelliptic curves, contradicting that S
is a canonical surface. Hence deg V = 2n - 2 and V is not a ruled sur-
face. Since we have L 2 = 2 deg V, ( L I is free from base points. When
deg 0 L = 3, we have deg V  2 n - 2. Therefore, V is birationally equiv-
alent to a ruled surface. When deg 0 L = 4, we have deg V = n - 1 and
L 2 = 4n - 4. Since L 2 = 4degV, L ~ I is free from base points.

Next, assume that GL is composed of a pencil. Then there are an ir-
reducible pencil {D} and an effective divisor Z such that L is numeri-
cally equivalent to mD + Z, where m is an integer satisfying m ~ n.
Then 4n - 4 ~ L 2 = rnLD + LZ ; nLD. It follows that LD ~ 3, and we
have 3 ~ LD + DZ ~ Since S is an even surface, D 2 is non-
negative even integer. Since % * 2, we get D 2 = 0. Therefore, {D} is a
pencil of curves of genus at most 4 without base points. Since S is a
canonical surface, {D} must be of nonhyperelliptic type. Q.E.D.

We call a pencil on a surface Petri special, if a general member
is trigonal or plane quintic. Otherwise, it is said to be Petri general.
For any nondegenerate variety W in P’’, we denote by Q(W) the
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intersection of all hyperquadrics through W and call it the quadric
hull of W.

The following is a special case of [Part I, Theorem 8.3].

LEMMA 1.2. Let S be as above and X its canonical image. If S has
a Petri special pencil, then the irreducible corrcponent of Q(X) contain-
ing X is of dimension 3. In particular, if S is a surface of type (III) or
(V), then X is not cut out by hyperquadrics.

Since we are interested only in a surface whose canonical inage is
cut out by hyperquadrics, we can exclude surfaces of type (III) or (V)
from our consideration. Then it follows from Proposition 1.1 that x =
= 4n and L2 = 4n - 4. Furthermore, we can assume that S has no Petri
special pencils in what follows.

2. Quadric hull of a semi-canonical surface.

From this section up to Sect. 6, we let S be a surface of type (I) in
the sense of Proposition 1.1.

LEMMA 2.1. Let S be a surface of type (I). Then either

(1) 1 L I is free from base points, or

(2) 1 L I has a unique transversal base point.

PROOF. Let Q: S ~ S be a composite of blowing-ups such that the
variable part I M I of I is free from base points. We can assume
that a is the shortest among those with such a property. Since L 2 =
= 4n - 4, we have M2 ;::: 4n - 5 by [Part I, Lemma 2.1]. If M2 = 4n - 4,
then L ~ I is free from base points. If M2 = 4n - 5, then is a simple
blowing-up and L ~ I has a unique base point. Q.E.D.

LEMMA 2.2. Every surface of type (I) is regular.

PROOF. Let ~: S ~ S and M be as in the proof of Lemma 2.1. Let C
be a general member of M ~ , and consider the cohomology long exact
sequence for

From this, we get h ° (M ~ C ) &#x3E; n. On the other hand, we have M2 ~
&#x3E; 4h ° (M ~ C ) - 6 by the proof of [Part I, Lemma 2.1]. Since M2 = 4n - 4
or 4n - 5, we have = n. In particular, the restriction map

is surjective. Hence q(S) = h 1 (ns ) ~ 
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If L ~ I is free from base points, then M = L and we have = 0

by Proposition 1.1. Thus q = 0. If [L I has a base point, we have
h° (M) - h 1 (M) + h° (M + 3E) = 2n + 1 by the Riemann-Roch theo-
rem, where E is the exceptional ( - I )-curve. Since a* L = [M + E], we
get h ° (M + 3E) = n + 1 from

for 1 ~ i :s:; 2. Hence we get = 1 and q ~ 1.
Assume that q = 1. Then we have h 1 (E) = 1. From the cohomology

long exact sequence for

we get Since this implies that

I is free from base points. Hence it induces a birational holo-
morphic map of C onto its image which is of degree 4n - 4 in P" . Then
Castelnuovo’s bound [7] implies g(C)  6n - 9. This is absurd, since

g(C) = 6n - 5. Q.E.D.

For any nondegenerate subvariety the Hilbert function hw
of W is defined by

For the properties, consult [7].

LEMMA 2.3. Let S be a surface of type (I). Then the quadric hull
of the serrzi-canonicccl image V is an irreducible 3-fold of degree

n - 2 or n - 1 unless n = 4 and Q(V) = p4 .

PROOF. Let M be as in the proof of Lemma 2.1. We denote by C a
general member of M ~ . Then it is an irreducible nonsingular curve of
genus 6n - 5. The image Co = is considered as a general hyper-
plane section of V. We denote by Zo c p n - 2 a set of points obtained by
cutting Co by a general hyperplane. Then it consists of M2 distinct
points in uniform position.

Assume first that L ~ I is free from base points. The canonical bundle
of C is induced by 3L and we have = n. Then hO(2Llc) =
= 3n - 2 by the Riemann-Roch theorem. We have

Hence we get = 2n - 3 or 2n - 2. When = 2n - 3, 
is a rational normal curve by Castelnuovo’s lemma (see, e.g. [7]). Since
V, Co and Zo are linearly normal, Q(V) is an irreducible 3-fold of degree
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n - 2. When = 2n - 2 and % * 5, Q(Z ) is an elliptic normal
curve by a result of Harris-Eisenbud [7]. Hence, if n &#x3E; 5, Q(V) is an ir-
reducible 3-fold of degree n - 1. When n = 4, we have = P4 .

We next assume that L ~ I has a base point. Then the canonical bun-
dle of C is induced by 3M + 3E, where E denotes the exceptional ( -1 )-
curve for c: S -&#x3E; S. Since h0(2M|C)h0(2c*L|C)=3n - 2, we have

= 2n - 3 or 2n - 2 as in the previous case. We show that
= 2n - 3. Assume that hz ( 2) = 2n - 2. Then we have

h ° ( 2M ~ ~ ) = hCo ( 2 ) = 3 n - 2 . Since C is nonhyperelliptic, we have
Hence we get h ° (( 3M + E) ~ ~ ) = 6n - 7 by the Rie-

mann-Roch theorem. Since and since

we get ~3~-5. On the other hand, we have hZo ( 3 ) &#x3E; n - 2 +
+ (2) = 3n - 4, which is absurd. Hence (2) = 2n - 3, and we see
that Q(V) is an irreducible 3-fold of degree n - 2 in pn as in the previ-
ous case. Q.E.D.

For a further study of surfaces of type (I), we recall an explicit de-
scription of an irreducible, nondegenerate threefold of degree n - 2,
n - 1 in P n .

LEMMA 2.4. (See, e.g. [3]). An irreducible nondegenerate 3-fold of
degree n - 2 in P n is one of the following varieties:

(1) p3 (n = 3).

(2) A hyperquadric in P4(n = 4).

(3) A cone over P2 embedded into p5 by the holomorphic map as-
sociated with 1(9p2 (2) I, i. e., the weighted projective space P( 1, 1, 1, 2)
(n = 6).

(4) A rational normal scroll, that is, the image of the total space
of the 

by the holomorphic map associated with where T denotes a tauto-
logical divisor on Pa, b, c and a, b, c are integers satisfying

To state the next result, we use the following notation: We denote
by 1: d the Hirzebruch surface of degree d. Let 4 o and r be a section with
do = - d and a fibre of the projection ~d --~ P1, respectively.
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LEMMA 2.5 ([4], [5], [6]). An irreducible nondegenerate threefold
W of degree n - 1 in P’ is one of the following varieties:

(1) A hypercubic (n = 4).

(2) A complete intersection of two hyperquadrics (n = 5).

(3) A cone over a surface 2: of degree n - 1 in pn - 1, where 2: is
one of the following (see, e.g. [2], [13]):

(3a) The Veronese embedding into p8 of a quadric in p3 (n =
= 9).

(3b) The image of p2 by the rational map associated with the

linear system where 1 is a line on p2 and the xi are points

on p2 which are possibly infinitely near (n = 10 - k, 0  k  6).

(3c) A cone over a nonsingular elliptic curve.

(3d) A projection of a surface of degree n - 1 in pn from a
point.

(4) A non-conic normal Del Pezzo threefold (6 :s:; n ~ 9).

(4a.1) Let Gr(2, 5) be the Grassmannian of two planes in C5
embedded into P9 by the Plilcker coordinates. Then W is a nonsingu-
lar threefold obtained by cutting Gr(2, 5) three times by hyperplanes
(n = 6).

(4a.2) Consider the p2 -bundle fIT: 0 ED ðC10 + 2r)) ~ ~ 1,
a n d l e t T denote a tautological divisor. Then W is the image of a mem-
ber of T + m* (do + r) I under the holomorphic map associated with

= 6).

(4a.3) Consider the Pl-bundle fIT: d(T)) -j Pl, i, I, and let
T denote a tautological divisor. Then Wo is the image of a member of
I T + m* (T - F) I under the holomorphic map associated with I T ,
where F is a fiber of Pl, 1, 1 ~ Pl (n = 6).

(4b.1) Pl x Pl x Pl embedded by IHI + H2 + H3 1, auhere Hi is
the pull-back of a point of the i-th factor (n = 7).

(4b.2) P(0 p2 ) embedded by where denotes the tangent
sheaf of p2 and H is a tautological divisor on P(OpZ)(n = 7).

(4b.3) Consider the p2 -bundle O(2)) over p2 , and
let T and F denote a tautological divisor and the pull-back of a line in
p2 , respectively. Then W is the image of a member of + F I under
the holomorphic map associated with I T (n = 7).
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(4b.4) Consider the p 2-bundle ur: C9 ED + 3F)) ~1:2,
a n d let T denote a tautological divisor. Then W is the image of a non-
singular member of T + m* (Jo + r) under the holomorphic map asso-
ciated with (n = 7).

(4b.5) Consider the P’-bundle f11: O(T)) -~ and
let T denote a tautological divisor. Then W is the image of a
member of T + m* (T - 2F) I under the holomorphic map associated
with I TI (n = 7).

(4b.6) Consider the p 2-bundle (9 (D O(do + 2r)) ~1:0,
a n d l e t T denote a tautological divisor. Then W is the image of a non-
singular member of T + under the holomorphic map associated
with I TI (n = 7).

(4c) W is p3 blown up at one point x. If we denote by H and E
the pull-back of a plane in p3 and the inverse image of x, respectively,
then W is embedded by 2H - E I (n = 8).

(4d) p 3 embedded by I ð(2) (n = 9).
(5) A projection of a threefold of degree n - 1 in P + from a

point.

DEFINITION 2.6. We divide surfaces of type (I) into the following
three classes:

(Ia) is a threefold of degree n - 1 (n ~ 5), or = P’
(n = 4). 

_

(Ib) is a threefold of degree n - 2, and I L I has no base

points..
(Ic) is a threefold of degree n - 2, and I L I has one base

point.

We shall study each type separately in the following sections.

3. Surfaces of type (Ia).

In this section, we consider surfaces of type (Ia) and show the
following:

THEOREM 3.1. Let S be a surface of type (Ia). Then the semi-
canonical image V is isomorphic to the canonical model. When n = 4,
V is a complete intersection of a hypercubic and a hyperquartic. When
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n = 5, V is a complete intersection of two hyperquadrics and a hyper-
quartic. When n &#x3E;- 6, V can be obtained as a hyperquartic section of a
normal Del Pezzo threefold Q(V). In particular, 4  n  10. Further-
more, the canonival image is cut out by hyperquadrics.

LEMMA 3.2. Let S be a surface of type (Ia) with n = 4. Then the se-
mi-caconical image V is a complete intersection of a hypercubic and a
hyperquartic, and it is isomorphic to the canonical model of S.

PROOF. Let xi, 0 ~ I 5 4,be a basis for HO(L). Then, by the as-
sumption, the 15 products are linearly independent, Since
h ° ( 2L ) = pg = 15, they form a basis for The products 
give 35 elements in On the other hand, we have = 34

by the Riemann-Roch theorem and Ramanujam’s vanishing theorem.
Hence we have a cubic relation A3 = 0 in the xi . The products Xi Xj Xk Xl
give 65 elements in modulo A3 = 0. Since = 

= 64, we have a quartic relation A4 = 0 in the xi . It is easy to see that the
semi-canonical ring fli H° (mL) is generated by the xi and that there

’n ::-,.0

are no further relations. Since K = 2L, V is isomorphic to the canonical
model. Q.E.D.

LEMMA 3.3. Let S be a surface of type (Ia) with n ~ 5. Then V is
projectively normal and is isomorphic to the canonical model.

PROOF. This follows from a similar observation as in [10, § 4]. We
have h ° (L ) = n + 1 and = pg = 4n - 1. By the Riemann-Roch
theorem and Ramanujam’s vanishing theorem, we have

for m ~ 3. Since is an elliptic normal curve, a calculation shows
that

hold for any m ; 1. It follows that V is projectively normal and, thus,
the semi-canonical ring is generated in degree 1. Since K = 2L, we see
that V is isomorphic to the canonical model. Q.E.D.

LEMMA 3.4. Let S be as in Lemma 3.3. When n ~ 6, Q(V) is a nor-
mal Del Pezzo threefold. In particular, is projectively nor-

mal.
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PROOF. It suffices to show that (3c), (3d) and (5) in Lemma 2.5 are
inadequate. Since ,S is regular, Q(V) cannot be a scroll over an elliptic
curve. Furthermore, as in [10, § 4, Claim], we can show that Q(V) can
be neither a projection of a 3-fold of degree n - 1 in nor a cone

over a projection of a surface of degree n - 1 in Pn . Hence Q(V) is a
normal Del Pezzo 3-fold when n &#x3E; 6. It is projectively normal by [5].
Q.E.D.

We complete the proof of Theorem 3.1 with the following:

LEMMA 3.5. Let ,S be as in Lemmas 3.3. Then V is a hyperquartic
section of Q(V). Hence the canonical image of S is cut out by
hyperquadrics,.

PROOF. Recall that V and Q(V) are both projectively normal. Since
we have deg Zo = 4n - 4, = 4n - 5 and = 4n - 4, we
see that V is a hyperquartic section of Q(V). Since the canonical image
X is the Veronese transform of V, it is a hyperquadric section of the
Veronese transform of Q(V). Since the homogeneous ideal of Q(V) is
generated in degree 2, it follows that X is cut out by hyperquadrics and
hence X = Q(X). Q.E.D.

Conversely, we check the existence of surfaces of type (Ia). When
Q(V) is a non-conic Del Pezzo threefold, this is straightforward by
using a description of Q(V) in Lemma 2.5, (4): one can check that a
generic hyperquartic section of a non-conic normal Del Pezzo 3- fold has
at most rational double points, and that its minimal resolution is an
even canonical surface with K2 = 4pg - 12, q = 0. In particular, we
have an octic surface when Q(V) is the Veronese transform of p3.

In the rest of the section, we consider (3a) and (3b) in Lemma 2.5.
Let v be the vertex of Q(V). We denote by A o the pull-back to ,S by OL of
the linear system of hyperplanes through v. We let G be the fixed part
of A o and put A = A o - G. Then A defines a rational map tA: and
we have L = [H + G], Since L ~ I has no base points, we have
LG = 0. Then 4n - 4 = L2 = LH = H2 + HG ~ H2 &#x3E; 
= 1), and it follows 4. Since S is a canonical surface,
deg g is not less than 3. If deg g = 3, then S would have a pencil of trigo-
nal curves. Since the canonical image is cut out by hyperquadrics by
Lemma 3.5, this contradicts Lemma 1.2. Therefore, we have degg = 4,
HG=0 andH2=4n-4. Since HG=0 and G2=0, we get G = 0 by
Hodge’s index theorem. We remark that ti is holomorphic. In fact, if A
has a base point P, blowing S up at P and considering the strict trans-
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form A of A, we would have H2  H2 for H which implies that the
map induced by A is of degree less than 4. This is impossible by Lem-
mas 1.2 and 3.5.

LEMMA 3.6. Let ,S be a surface of type (Ia) with n = 9 such that
Q(V) is a cone over the Veronese transform of a quadric surface as in
Lemma 2.5, (3a). Then the canonical model of ,S is a weighted complete
intersection of type (2, 8) in the weighted projective space P(1,1,1,1, 2)
defined by

where (x° , u) is a system of coordinates with deg xi = 1,
deg u = 2, and the A~ , Bj are homogeneous forms of degree j in the xi .

PROOF. Since 2: is the Veronese transform of a quadric surface, we
can find a divisor Lo on S such that L = [H] = 2[Lo ] and Lo induces a
holomorphic map of degree 4 onto the quadric surface. Let

x2 , be a basis for We have a quadric relation A2 = 0
among them. Modulo A2 = 0, the products give us 9 elements. On
the other hand, since = = 10, we have a new element
ç E HO(L). We look at = H ° ( 2K) which is of dimension 164.
Here we have the following elements:

octics in the xi (sextics in the 

(quartics in the Xi) ç 2 (quadratics in the xi ) ~ 3 .
Modulo A2 = 0, these present 164 elements which are clearly linearly
independent. Hence ~ 4 can be expressed as a linear combination of
them, and we get

where the Bi are homogeneous forms of degree i in the Putting
u = ~, we get a holomorphic map of S into P(1,1,1,1, 2) whose image is
defined by (3.2). Conversely, if the coefficients are sufficiently general,
(3.2) defines a nonsingular surface whose canonical bundle is induced
by (9(4) Hence it is an even canonical surface with the desired numeri-
cal characters. Q.E.D.

REMARK 3.7. Let t be a complex parameter ranging in a neigh-
bourhood of the origin. Replacing A2 = 0 by tu - A2 = 0 in (3.2), we get
a family of deformations of surfaces of type (Ia). When t ~ 0, we get an
octic surface by substituting u = A2 It to the second equation of (3.2).
Therefore, a surface in Lemma 3.6 is a specialization of octic sur-

faces.
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LEMMA 3.8. Let S be a surface of type (Ia) and assume that Q(V)
is a cone over a weak Del Pezzo surface 1: as in Lemma 2.5,
(3b). Let ± denote the minimal resolution of ~, and let 8 be the pull-
back of a hyperplane section of 1:. Then S is birationally equivalent to
a 4-sheeted covering defined in the total space of [H] by

where u denotes a fiber coordinate on [H] and the Ai are sections in
H 0 (iH).

PROOF. Let ± be p2 blown up at k = 10 - n points x1, ... , xk and let
~: ~ ~ P2 be the natural map. Let H = 3~ * t - ~ ~ -1 (xi ) be the pull-
back of a hyperplane of 

Note that HO(2, n(mH)) = o(m)) holds for any m &#x3E; 0. Since
[ - H] is the canonical bundle of 2, we have

by the Riemann-Roch theorem and Ramamujam’s vanishing theorem.
Let :x*o, .... and ~ be a basis for such that the xi span
,u * H° (~, n( 1)). Since = 20n - 16, the following 20n - 15 prod-
udts

in Ho ( 2K) are linearly dependent. Thus ,S is birationally equivalent to
a quadruple covering of 1: defined by

where and a are homogeneous forms of respective degree 1, 2, 3
and 4 in the homogeneous coordinates (zo , ... , zn _ 1 ) of and

0 * -q. This induces via Z - Z a quadruple covering S * of ~. Then the
equation of S * is as in the statement.

Conversely, if we choose the Ai generic, (3.3) defines a nonsingular
surface whose canonical bundle is induced by 2H, and we get an even
canonical surface with the desired numerical characters. Q.E.D.

4. Surfaces of type (Ib): Q(V) is not a scroll.

In this section, the following result will be proven by using several
lemmas.
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THEOREM 4.1. Let S be a surface of type (Ib) whose canonical im-
age is cut out by hyperquadrics. Assume further that the quadric hull
of the semi-canonical image is either p3, a hyperquadric or a cone over
the Veronese surface. Then S is birationally equivalent to one of the
following surfaces:

(1) A weighted complete intersection of type (4, 4) in the weighted
projective space P( 1, 1, 1, 1, 2) defined by

where ( xo , xl , X2, X3 u ) is a system of coordinates with deg xi = 1, 9
deg u = 2, and the Ai and Bi are homogeneous forms of degree i in the xj
(n=3).

(2) A weighted complete intersection of type (2, 3, 4) in the

weighted projective space P( 1, 1, 1, 1, 1, 2 ) defined by

where (XO, xl , x2 , X3 x4 , u) is a system of coordinates with deg xi = 1
(0 :s:; i ~ 4), deg u = 2, and the Ai , Bi and Ci are homogeneous forms of
degree i in the 

(3a) A weighted complete intersection of type (4, 5, 8) in the

weighted projective space P( 1, 1, 1, 2, 4, 4) defined by

where (xo , xl , x2 , U, v, w) is a system of coordinates with deg xi = 1,
deg u = 2, deg v = deg w = 4, the Bjk and Cjk are homoge-
neous forms of degree j in the xi (n = 6).

(3b) A weighted complete intersection of type (5, 8) in the weight-
ed projective space P(1,1,1, 2, 4) defined by

where (xo , Xi, x2 , U, V) is a system of coordinates with deg xi = 1,
deg u = 2 and v = 4, and the Bj are homogeneous forms of degree j
in the xi ( n = 6).

The following is useful in the study of surfaces of types (Ib).
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LEMMA 4.2. Let S be a surface of type (Ib). Then the image of the
multiplication map

is of codimensional 1.

PROOF. Since Q(V) is an irreducible threefold of degree n - 2 in
pn, it is projectively normal and 0(2)) = 4n - 2 . Clearly, we
have hv(2) = O(2)). Since pg = 4 n - 1, the image of 03BC is of
codimensional 1. Q.E.D.

LEMMA 4.3. Let S be a surface of type (Ib) with n = 3. Then
the canonical model is a weighted complete intersection in Theo-
rem 4.1, (1). 

_

PROOF. Let X2, X3 be a basis for H° (L). By Lemma 4.2, we
can find a which is linearly independent from the
products We have = = 44. In we have the

following elements:

quartics in the xi , (quadratic in the xi ) ~ , ~ 2 .

These represent 46 sections in total. Therefore, we have two rela-
tions

where the Ai and Bi are homogeneous forms of degree i in the xk . If
Ao = B° = 0, we would have a sextic relation A2 B4 = A4 B2 by eliminat-
ing ~. This is impossible, since V is of degree 8 in P 3 . Therefore, we can
assume that Ao = 1 and Bo = 0. We have shown that can be lifted to a

holomorphic map of ,S into P(l, 1, 1, 1, 2) by setting u = ~. The image is
a weighted complete intersection in Theorem 4.1, (1). It is easy to see
that it is the canonical model of ,S. Q.E.D.

LEMMA 4.4. Let S be a surface of type (Ib) with n = 4. Then
the canonical model is a weighted complete intersection in Theo-
rem 4.1, (2).

PROOF. Let xi, 0  I 5 4, be a basis for Ho (L). Since V is contained
in a hyperquadric, we have a quadratic relation A2 = 0 in the xi . In

H° ( 2L ) = e15, we have 15 products Modulo A2 , these present 14
linearly independent elements. Therefore, we can find a new element

In H° ( 3L ) = C~ , we have xi xj xj and Modulo A2 ,
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they represent 35 sections. Hence, we have a relation of the form
+ B3 = 0, where the Bk are homogeneous forms of degree k in the

xi . Note that B, cannot be zero, since, otherwise, we have a cubic rela-
tion satisfied on V which is not induced by A2 . We look at H° (4L) _
= H ° ( 2K) which is of dimension 64. In we have

(quartics in the ri ), (quadrics in the Xi) ç , ç 2 .

Modulo these give 65 sections. Therefore, we have a
non-trivial relation of the form

where the Ci are homogeneous forms of degree i in the xk . Note that Co
is a non-zero constant, since, otherwise, we have a quintic relation
BI C4 = B3 C2 which together with A2 = 0 implies that V is a complete in-
tersection of type (2, 5) contradicting deg V = 12. Hence we can assume
that Co = 1.

We have shown that OL can be lifted to a holomorphic map of S into
P(I, I, I, I, 1, 2) and the images is as in Theorem 4.1, (2). It is easy to
see that it is the canonical model of S. Q.E.D.

Let S be a surface of type (Ib) with n = 6, and assume that Q(V) is a
cone over the Veronese surface. Let Ao be the pull-back to S of the lin-
ear system of hyperplanes through the vertex of Q(V), and let G be its
fixed part. Since Q(V) is a cone over the Veronese surface, we have a
net A such that 2H + G E Ao for H E A. We have L = [ 2H + G]. Since
~ L ~ I is free from base points, we have LG = 0. We have 20 = L 2 =
= 2LH = 4H2 + 2HG ~ 4H2 . It follows that H2 :s:; 5. Since S is an even
surface, H2 must be a positive even integer. Hence H2 = 2, 4. Since S is
a canonical surface, H2 = 2 is inadequate. Thus H2 = 4, HG = 2 and
G2 = - 4.

LEMMA 4.5. G consists of ( -2)-curves. More precisely, either

( 1 ) G = GI + G2 with two disj oint (-2) curves Gl , G2 such that
HGi = 1, or

(2) G=2(Gi+ 
curves with HG1 = 1, Gi Gi + 1 = 1 for 1-i-m-3, 
= Gm-2Gm = 1 and ( m ~ 3 ).

PROOF. Since KG = 2LG = 0, G consists of ( - 2 )-curves. Recall
that HG = 2.
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Assume that there exists only one irreducible component GI of G
with HG1 = 2. Then GI is of multiplicity one in G and H( G - G1 ) = 0.
Since we get G1 (G - Gl ) _ - 2
which is absurd. Hence we have either

(i) there exist two irreducible components Gi , G2 of G such that
HGi = 1, or

(ii) there exists only one irreducible component GI of multiplicity
2 in G such that HGI = 1.

Assume that (i) is the case. Since HG = 2, each Gi is of multiplicity
one in G. Since we have 0 = LGI = 2HGI + G 2+ G1 G2 + Gi (G - G1 -
- G2 ), we get GIG2 = Gi (G - GI - G2 ) = 0. Similarly, we get 
-G1-G2)=0. Then we have (G-G1-G2)2 = 0 by L(G-G1-G2) =
= 0. Since H(G - GI - G2 ) = 0, Hodge’s index theorem shows G - GI -
- G2 = 0. Hence G consists of two disjoint ( - 2)-curves Gi , G2 with
HGi = 1. This gives (1).

Assume that (ii) is the case. Then H(G - 2Gi) = 0. It follows from
LGI = 0 that Gi (G - 2Gi) = 2. Since L(G - 2Gi) = 0, we get (G -
- 2G1)2 = - 4. Hence we can repeat the above argument with the pair
(Gi , G - 2Gi) instead of (H, G). We have either G - 2Gi = G2 + G3
with disjoint ( - 2)-curves G2 , G3 satisfying GI G2 = G1 G3 = 1, or there
exists a component G2 of multiplicity 2 in G - 2Gi such that G, G2 = 1,
(G - 2Gi - 2 G2 )2 = - 4. In the latter case, we repeat the above argu-
ment with G2 , G - 2Gi - 2G2 ) instead of (Gi , G - 2Gi). Since such a
procedure must terminate, we see that G is as in (2). Q.E.D.

In particular, the support of G is connected unless G consists of two
disjoint ( - 2 )-curves.

LEMMA 4.6. Let S be a surface of type (Ib) and assume that Q(V)
is a cone over the Veronese surface. Then S is birationally equivalent to
one of the weighted complete intersections as in (3a), (3b) of Theo-
rem 4.1.

PROOF. Let z° , zl , z2 be a basis for the module of A, and let
r= H° ([G]) define G. Then the products zi generate a subspace of di-
mension 6 in Since h ° (L ) = 7, we have a new element ~ E Ho (L ).
Since L ~ I is free from base points and since LG = 0, we can assume that
~ does not vanish on G.

In H° (2L) = H° (K) = C23, we have the following elements:

(quartics in the Z, )~2 (quadrics in the 

These give 22 linearly independent elements.
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Case 1: Supp (G) is connected.

We have a new section n E Since ~ 2 is a constant on G, we
can assume that 77 is identically zero on G by replacing 77 by n - if

necessary, where c is some constant. This implies that there exists a
section § E H° (K - G) with 77 = ~~ which is linearly independent from
the 21 elements: (quartics in the zi ) t and (quadrics in the zi ) I. Since
HGl = 1, GI is mapped biholomorphically onto a line. Hence we can as-
sume that zo is identically zero on GI and that (zl , z2 ) induces a basis for
HO (ðGl (1).

We have h° (K + H) = 36 by the Riemann-Roch theorem and Ra-
manujam’s vanishing theorem. In H° (K + H), we have

(quintics in the zi ) ~ 2 , (cubics in the Z, ~ 2, 

These are 37 elements in total. Therefore, we have a non-trivial rela-
tion of the form

where the « 1 are homogeneous forms of degree i in the zk . Note that
a 1 ~ 0, since, otherwise, we have (X 1 r./J + a 3 ~ + a 5 ~ = 0, which is absurd.
However (4.1) tells us that « 1 vanishes identically on G. Hence, we can
assume that « 1 = zo.

In H° (K + 4H) = (!6, we have the following elements:

(octics in the zi ) ~ 2 , (sexrics in the 

(quartics in the zi ) ~ 2 , (quartics in the 

(quadrics in the zi)4, ~2 .
Modulo (4.1), these represent 97 sections. Hence we have a non- trivial
relation of the form

where the A are homogeneous forms of degree i in the Note that go
is a nonzero constant. Hence we can assume that B0 = 1 and

= 0 by a suitable linear change of ~ not involving ~. Multipliying ~ 2 ,
we get

Recall that G consists of ( - 2)-curves which is contracted to a rational
double point. Put u = ~/~ and V = YJlt:2. Then (4.1) and (4.2) shows that
S is birationally equivalent to a weighted complete intersection of type
(5, 8) in P(I, 1, 1, 2, 4). Hence we get Theorem 4.1, (3b).
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Case 2: G = GI + G2.

We define Gi (i = 1, 2). Then we can assume that
Since ~ 3 is a nonzero constant on Gi , we have an exact

sequence

Hence h ° (K - Gi ) = 22. we have 21 linearly independent elements:
(quartics in the z~ ) ~ 2 /~i , (quadrics in the ~. Thus we have a
new element 77 i E H° (K - Gi ). We can assume that 77 is a nonzero con-
stant on = {I, 2}), since, otherwise, we have h° (K - G) = 22
and can proceed as in Case 1. Since HGi = 1, we see that Gi is mapped
biholomorphically onto a line. Hence we can assume that zj vanishes
identically on Gi and that (z° , zi ) induces a basis for 

(l i ’ i l ’ I 1 ’ 2 1) °
In Ho (K), we have C1n i in addition to the 22 elements:

(quartics in the zj) ~2 (quadrics in the ti and ~ 2 . Hence we get a rela-
tion of the form

where 1 is a linear form in t i q i , t q , i  and the « k are homogeneous
forms of degree 1~ in the zi . By restricting this to GI or G2 , we see that
the coefficients = 1, 2) and ç 2 in l are all nonzero constants.
Thus we can rewrite it as

In H° (K + H) = C36 , we have

( quintics in the Zi)’ 2 , (cubics in the zi) a, 

modulo (4.3). These are 37 sections in total. Hence we have a relation of
the form

where the and are homogeneous forms of degree in the zi . We
can assume that (3l1 = zl and B12 = z2 . 

1 )2 )2.In we have (~ 1 and (~21)2)2.
Therefore, the restriction map is surjective, and we
have + 3G) = 102. In + 3G), we have the following ele-
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ments modulo (4.3):

( octics in the zi ) ~ 3 , (sextics in the 

( quartics in the zi ) C (Cjnj), ( quadrics in the zi)E(Cjnj),
n1n2.

Modulo (4.4), these give 103 sections. Hence we have a relation of the
form

where the = 1, 2) and y are homogeneous forms of degree i in
(2:0,2:i, z2 ). By restricting this to GI or G2 , we see that y o is a nonzero
constant. Multiplying ~, we get

Put U = ilt, v = and w = ~2772 /~2 . Then, by (4.3), (4.4) and
(4.5), S is birationally equivalent to a weighted complete intersection of
type (4,5,8) in P(1,1,1, 2, 4, 4). Hence we get Theorem 4.1, (3a).

Conversely, the weighted complete intersections as in (3a) and (3b)
of Theorem 4.1 are surfaces with at most rational double points provid-
ed that the coefficients are sufficiently general. Furthermore, since the
dualizing sheaf of such a surface is induced by 0(4), the minimal resolu-
tion is an even canonical surface with pg = 23, q = 0 and K2 = 80.
Q.E.D.

In sum, Theorem 4.1 has been shown.

REMARK 4.7. A surface in Theorem 4.1, (3b) can be obtained as a
specialization of surfaces in Theorem 4.1, (3a).

5. Surfaces of type (Ib): Q(V) is a scroll.

Let x: P a, b, C - Pl be as in Lemma 2.4. Let Xo, Xl , X2 be sections of
[ T - aF], [ T - bF], [ T - cF], respectively, such that they form a sys-
tem of homogeneous coordinates on each fibre F of 7r. We z,
denote a system of homogeneous coordinates on P~, which we identify
with a basis for HI (F). Let W be the total space of the bundle [2T] over

, and let w denote its fiber coordinate.
In this section, we show the following:
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THEOREM 5.1. Let S be a surface of type (Ib) and assume that the
quadric hull of the semi-canonical image is a rational normal scroll of
dimension 3. If the canonical image is cut out by hyperquadrics, then
S is birationally equivalent to one of the following surfaces:

(1) A surface defined in W by

where A E H ° (Pa, b, c, O (3 T - ( n - 4) F) ) , B E H ° (P a, b, c, n ( ( 4 T ) ) , and
(a, b,c)=(1, l,n-4), 5~n~7, or (a, b,c)=(0,2,n-4), 6~n~

10.

(2) A surface defined in W on by

or, when n = 5,

where A E (n - 4 ) F) and B E 5 ~ n ~ 7.

Let S be a surface of type (Ib) with n &#x3E; 5. Assume that the quadric
hull Q(V) of the semi-canonical image V is a rational normal scroll of di-
mension 3. Let A be the pencil of irreducible curves on S indiced by the
ruling of Q(V) via 4L. Let p: S -~ ,S be a composite of blowing-ups which
eliminates We assume that p is the shortest. Let ~: be the

corresponding fibration. We denote by D and D a general member of A
and a general fibre of A, respectively.

Let 8 be the locally free subshead of À * p * L generically generated
by elements in H ° (P1, ~ * p * L ). Since D is mapped onto a plane curve
via the semi-canonical map, we have =

= 3. It follows that 8 is of rank 3 and it is of the form

We have the natural sheaf 
which induces a rational map h: ,S -~ P ( ~) = P a, b, c. Since * L ~ I is free
from base points, we can assume that h is holomorphic and p * L = h * T.
Then, is nothing but the image of P a, b, c under the holomorphic
map defined by We have shown the following:

LEMMA 5.2. There exists a of the semi-
canonical map with p * L = h * T.
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Assume that h(S) is linearly equivalent to aT + ~F on P,,, be . We re-
mark that a = ( p * L ) D = LD. Since h maps D birationally onto a plane
curve of degree «, we have a ~ 6 if I ÎJ I is a Petri general pencil. Since
( p * L )2 = L 2 = 4n - 4, we have + (3F) = 4n - 4. Hence

Let C be a general member of p * L ~ . Then it is an irreducible nonsin-
gular curve of genus 6n - 5. Hence the arithmetic genus of h(C) can be
written as 6n - 5 + ~ with a nonnegative integer 8. Since the dualizing
sheaf of h(C) is induced by (a - 2) T + ( p + n - 4) F, we have 12n -
- 12 + 28 = T(aT + (3F)«a - 2) T + (p + n - 4) F). It follows from this
and (5.1) that

LEMMA 5.3. Assume that ,S has no Petri special pencils. Then
h(S) is linearly equivalent to either

In particular, b is positive. Furthermore, I D I is free from base
points when n ; 6. When n = 5, 1 D I is free from base points or
D2=2.

PROOF. Since % * 5, a ~ 6 and 6 0, we see from (5.1) and (5.2)
that only (1) and (2) are possible. If a = b = 0, then, it is easy to see that
~ 6 T - 2(n - 4) F ~ I and 17T - 5FI I have a fixed component linearly
equivalent to T - (n - 2) F. It would follow that h(S) is reducible.
Hence b must be positive. In order to show the last assertion, we recall
that (LD )2 ~ L 2 D 2 = 4(n - 1 ) D 2 holds by Hodge’s index theorem.
Since S is an even surface, D 2 is a nonnegative even integer. Hence
D~ when n * 6, and D 2 = 0, 2 when n = 5. Q.E.D.

LEMMA 5.4. Assume that LD = 6. If the canonical image X is cut
out by hyperquadrics, then D 2 = 0 and the restriction map 

surjective.

PROOF. Since D is a nonhyperelliptic curve, we have h ° (L ~ D ) ; 3
by Clifford’s theorem. Since D is mapped birationally onto a plane sex-
tic curve via the semi-canonical map, we have /~(L~)~3. Hence

= 3 and the restriction map is surjective.
Since 2L = K and since it induces a special divisor on D, Clifford’s theo-
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rem gives h ° ( 2L ~ D ) ~ 7 with equality holding if and only if is a
canonical divisor, that is, D 2 = 0.

We consider the following commutative diagram:

is a plane sexctic, the ’ image of the multiplication map
Sym2 is a subspace of dimension 6. 
-~ H° ( 2L ( D ) were of rank 6, then 0 k (D) would be the Veronese trans-
form of ø L (D) and, hence, it is not cut out by quadrics. Therefore,
D 2 = 0 and = is surjective when X is cut
out by quadrics. Q.E.D.

LEMMA 5.5. Assume that n = 5 and LD = 7. Then the canonical

image of S is not cut out by hyperquadrics,.

PROOF. Since b &#x3E; 0 by Lemma 5.3, (a, b, c) = (1, 1, 1) or (o,1, 2).
Assume that (a, b, c, ) = (1, 1, 1). Then p is the identity map and V

is linearly equivalent to 7T - 5F on Pi, i, i . We have Pal, 1, 1 = Pl X P2 .
Let Hi be the pull-back of a hyperplane in = 1, 2 ). Then T and F
are linearly equivalent to Hl + H2 and Hl , respectively. Hence V is lin-
early equivalent to 2H, + 7H2 , and it is a double covering of P2 via the
projection pI x p2 _4 P2 . Since V is birational to a canonical surface S,
this is impossible. Hence (a, b, c) ~ (1, 1, 1).

Assume that (a, b, c) = (0, 1, 2). Let C be, as before, a general
member of ILl. . Since = 0, is surjective. It
suffices to show is not cut out by hyperquadrics. Note that
ø L (C) is linearly equivalent to 7/to + 91, on E1 and that its dualizing
sheaf is induced by 5Jo + 61,. Since a = 2 by (5.2), we see that 0 L (C) has
two singular points xl , x2 which are possibly infinitely near. The canon-
ical bundle of C is induced by 3L. Since Lie comes from zio + 21,, the
conductor is induced by 2/to. It follows that x, and x2 are
on the minimal section L1 0 . We have + 91,) = 2. Hence x2 is in-
finitely near to x1.

Let v: denote the blowing-up at xl , X2, and let d be the prop-
er transform of A0 by v. Put Ei = for i = 1, 2. The proper trans-
form Of 0 L (C) by v is linearly equivalent to v * ( 7d ° + 21,) - 2Ei - 2E2 ,
and we can identify it with C. Since Cd = 0, the divisors H := 2 v * (40 +
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+ 2r) + J and K are equivalent on C. Consider the following exact
sequence:

Since ~-C--2~(~o+r)+~+~ we have 
= H 1 (H - C) = 0. It follows that H° (H) is restricted onto iso-

morphically. Note that H ~ I induces a birational map of ~ onto its im-

age. Since H° ( 2H - C) = 0, ~(C) cannot be cut out by hyperquadrics.
Q.E.D.

LEMMA 5.6. Assume that LD = 6 and n2 = 0 . Assume further
that the canonical image is cut out by hyperquadrics. Then

PROOF. We have a holomorphic map h: with L = h * T
and D = h * F which is birational onto its image. Since h(,S) is linearly
equivalent to 6T - 2(n - 4) F, the natural homomorphism
h * : H ° ( iT + jD ) is injective for any j whenever I 5 5.
We can choose sections X° , Xl and X2 of [ T - aF], [ T - bF] and [ T -
- cF], respectively, such that they from a system of homogeneous coordi-
nates on fibers of Put ~ i = h * Xi ( 0 ~ i ~ 2) and let zo, z,
be a basis for Ho (D).

We have F) = 4n - 8. Since the restriction map 
is surjective by Lemma 5.4, we have h° (K - D) = pg - 7 =

- 4n - 8. Hence h * : H° ( 2 T - F) -~ H° (K - D ) is an isomorphism. Since
the image of Sym2 Ho (L) - H° (K) is of codimension 1 by Lemma 4.2,
we can find a new element n e H° (K). Then, by Lemma 5.4 again, we
see and n induce a basis for Ho (KD ).

We have hO(3L) = lOn - 6 and h° (3T) = lOn - 10. In H° (3L), we
also have the following n + 1 elements:

Since h * H° ( 3 T ) is of codimension 4, there are at most 4 additional lin-
early independent elements in (5.3). Hence we have (at least) n - 3 re-
lations of the form

where 1 E and ~ E h * H ° ( 3 T ). If there were two independent
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relations as above, by eliminating q, we would get a non-trivial relation
which is of degree 4 in the ~ i . This is absurd, since LD = 6. Hence all
the n - 3 relations are derived from a single relation in H° (3L - (n -
- 4) D). It follows that c &#x3E; n - 4, since H° (3L - (n - 4) D) must contain
an element of the form zi ) i j i 77. Since a + b + c = n - 2 and b &#x3E; 0,
we have (a, b, c) = (1, 1, n - 4), 0, 2, n - 4) or (0, 1, n - 3).

Assume that c = n - 4. We have shown that there is a non-trivial
relation of the form

where A E ( n - 4 ) F) . From this, we see that A cannot be
divided by ~ 2 . Hence n ; 7 if a = 1, and % 5 10 if a = 0.

When c = n - 3, we can assume that there is a non-trivial relation of
the form

or, when n = 5.

where A E h * H° (3T - (n - 4) F). Recall induce a basis for

H° (KD ). Hence, in (5.5a), A cannot be divided by ç 2. It follows % 5 7.
Q.E.D.

LEMMA 5.7. In (5.5a), A cannot be divided by z° .

PROOF. Assume contrarily that zo divides A and that we have a re-
lation of the form

where Ao e h * H ° (3 T - (n - 3 ) F) . Then, in H ° ( 3L ), we find only three
modulo h * and (5.6). Hence there is

a new element ~ E HI (3L). We have + F) = 10n and h ° ( 3L +
+ D ) = 10n + 6 by the Riemann-Roch theorem and Ramanujam’s vanish-
ing theorem. In H° (3L + D), we have the following 7 elements modulo

and (5.6):

Hence we may assume that there is a relation of the form

where A1 E h * H ° ( T + F) and A2 e h * H ° ( 3 T + F), since, if the relation
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does not involve ~, we get a relation in (zo , z1, ~ o , ~ 1, ~ 2 ) which is of
degree 4 in the ~ i by eliminating q using (5.6).
We have = 20n - 16 and = 20n - 25. In we

have the following 10 elements modulo (5.6) and (5.7):

Hence we have a relation here. In this relation, the coefficient of 1]2
cannot be zero, since, otherwise, we get a relation in (zo , zl , ~ o , ~ 1, ~ 2 )
which is of degree 5 in the ~ i by eliminating 77 and ~ using (5.6) and
(5.7). Hence we can assume that it is of the form

where A3 E h + and A4 E h * H ° ( 4 T ).
Now, eliminating 77 and ~ from (5.8) by using (5.6) and (5.7), we

get

which is a non-trivial relation in H° (6L - ( 2n - 7) D). Since h(S) is lin-
early equivalent to 6T - 2(n - 4) this is impossible. Q.E.D.

We complete the proof of Theorem 5.1. We look at H°(4L) =
= H° ( 2K) which is of dimension 20n - 16. Here, we have n 2 ~77, ~ with

Since h’(2T) = 4n - 2 and 
= 20n - 25, these give 20n - 15 elements modulo the relation (5.4),
(5.5a) or (5.5b) in H° (3L - (n - 4) D). Hence we have a non-trivial re-
lation among them. If the coefficient of Y)2 in the new relation were
zero, then, by eliminating 77 using the first relation, we would get a
non-trivial relation in (zo , Zl, ç 0, ç I, ç 2) which is of degree 5 in the ç j.
This is absurd, since LD = 6. Therefore, by a suitable linear change of 72
if necessary, we get a relation of the form

where 
Let W and w be as in Theorem 5.1. We have shown that h can be lift-

ed to a holomorphic map of S into W by setting w = 77. The image is as in
Theorem 5.1. Conversely, if the coefficients are sufficiently general, a
surface in Theorem 5.1 has at most rational double points as its singu-
larities, and the minimal resolution is an even canonical surface with
the desired numerical characters.
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6. Surfaces of type (Ic).

The purpose of this section is to show the following:

THEOREM 6.1. The canonical image of a surface of type (Ic) is not
cut out by hyperquadrics,.

Let S be a surface of type (Ic). We denote by ~: S - S the blowing-
up at the base point of L ~ I as in the proof of Lemma 2.1. We have
~ ~ * L ~ - ~ M ~ I + E, where E is the expectional ( -1 )-curve. Then M2 =
=4n-5, ME = 1.

LEMMA 6.2. Assume that S is a surface of type (Ic) with n = 3.
Then the canonical image of S is not cut only by quadrics.

PROOF. Let C be a general member of Since L ~ I has only one
base point, we can assume that it is a nonsingular irreducible curve of
genus 13. Since H (L) = H 1 ( 3L ) = 0, we see that the restriction maps

and are both surjective.
Hence it suffices to show that 4lK(C) is not cut only by hyper-
quadrics. 

_

For simplicity, we denote the proper transform of C by ~: S ~ S by
the same symbol. Since M2 = 7, Co := can be identified with a

plane curve of degree 7. Since the arithmetic genus of Co is 15, Co has
two singular points x1, X2 of multiplicity 2 which are possibly infinitely
near. Since the dualizing sheaf of Co is induced by n ( 4 ), the conductor
of C - Co comes from M - 3E. It follows that Co contacts the line 1
jointing xl and x2 to the third order at the point (corresponding to)
x=CnE.

Let v: Z - p2 denote the blowing-up at xl , x2, and put Ei = v -1 
Then the proper transform of Co by v is isomorphic to C, and it is linear-
ly equivalent to 7 y * l - 2Ei - 2E2 . Let v : ~ --~ ~ denote the blowing-up
at x, and put Ex = v -1 (x). Then is induced by H: = 2(v o v)* ~ + il
where i is the proper transform of 1 by v o v. It is easy to see that H° (H)
restrict to isomorphically. Since 2H - C is linearly equivalent

1 - Ex, any hyperquadric through 0 K (C) contains the im-
age of ± via It follows that 4lK (C) is not cut out by hyperquadrics.
Q.E.D.

LEMMA 6.3. If n = 4, then Q( V) is a singular hyperquadrics. If n =
= 6, then Q(V) cannot be a cone over the Veronese surface.
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PROOF. We have M2 = 4n - 5, Assume that n = 4. Then V is of de-
gree 11 in P 4 . If Q(V) were a nonsingular hyperquadratic, then its Pi-
card group is isomorphic to Z, and it follows that deg V must be even.
This is impossible. Hence Q(V) is singular. Assume that n = 6 and Q(V)
is a cone over the Veronese surface. Then, considering the pull-back of
the linear system of hyperplanes through the vertex of Q(V), we get
a decomposition M = 2H + G, where G denotes the divisorial part
of the inverse image of the vertex. Since I is free from base

points, we have MG = 0. Then 19 = M2 = 2MH, which is impossi-
ble. Q.E.D.

LEMMA 6.4. A surface of type (Ic) with n = 4 has a Petri special
pencil. In particular, the canonical image is not cut out by hyper-
quadrics.

PROOF. By Lemma 6.3, Q(V) is of rank 3 or 4. Hence Q(V) is ruled
by planes, and we have (not necessarily distinct) irreducible pencils
AI, A2 on S respectively induced by a ruling of Q(V) such that M is lin-
early equivalent to DI + D2 + G for Di E where G denotes the divi-
sorial part of the inverse image of the vertex of Q(V) via (Pm. Since M is
nef, we have 11 = M2 = MDI + MD2 + MG ~ MDI + MD2. Hence we
can assume that MDI 5 5. Since ø M maps DI birationally onto a plane
curve of degree MDI, we see that is a Petri special pencil.
Q.E.D.

By Lemmas 6.3 and 6.4, we can assume that Q(V) is a rational nor-
mal scroll and n ~ 5. Let A be a pencil of irreducible curves on S in-
duced by a ruling of Q(V). Let p: S ~ ,S be a composite of blowing-ups
which eliminates We assume that p is the shortest. Let 
be the corresponding fibration. We denote by D a general fibre of ~.
Using M instead of L, we can show the following similarly as in Lem-
ma 5.2.

L E MMA 6.5. T here exists a lifting h:S-&#x3E;Pa,b,c of the natural
holomorphic map 0 m: S -~ ~(V) satisfying p * M = h * T, where a, b, c
are integers with 0 :s:; a ~ b ~ c, a + b + c = n - 2.

Assume that h(S) is linearly equivalent to «T + (3F on Then

« _ ( p * M) D. Since h maps D birationally onto a plane curve of degree
«, we have « ~ 6 if D ~ I is a Petri general pencil. Since ( p * M)2 = M2 =
= 4n - 5, we have T2 («T + (3F) = 4n - 5. Hence
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Let C be a general member of Then it is an irreducible nonsin-

gular curve of genus 6n - 5. Hence the arithmetic genus of h(C) can be
written as 6n - 5 + 8 with a nonnegative integer ~. Since the dualizing
sheaf of h(C) is induced by (« - 2)T + + n - 4)F, we have 12n -
- 12 + 28 = T(aT + (3F)«a - 2) T + + n - 4) F). It follows from this
and (6.1) that

LEMMA 6.6. Assume that S has no Petri special pencils. Then
n = 5 and h(S) is linearly equivalent to 6T - 3F on Po, I, 2.

PROOF. Since % * 5, 6 and 8 ~ 0, it follows from (6.1) and (6.2)
that n=5 , a=6 and B=-3. We have (a,b,c)=(1,1,1)(0,1,2) or
(0, 0, 3). If ( a, b, c) = (0, 0, 3), then it is easy to see that any member of
~ 6 T - 3F I is reducible. If ( a, b, c) = (1, 1, 1), then we can show simi-
larly as in the proof of Lemma 5.5 that S is birationally equivalent to a
triple covering of P2. Hence S has a pencil of trigonal curves.

Q.E.D.

We complete the proof of Theorem 6.1 with the following:

LEMMA 6.7. Let ,S be a surface of type (Ic) with n = 5. Then the
canonical image of S is not cut out by hyperquadrics.

PROOF. We can assume that S is a surface as in Lemma 6.6. We let
C denote a general member of I L I It suffices for our purpose to show
that ø K (C) is not cut out by quadrics. We can identify C with its proper
transform in S by a. Then WM (C) is linearly equivalent to 6d o + 9r on

Note that we have a = 0 by (6.2). It follows that 4lM (C) is nonsingu-
lar and we can with C. The canonical bundle of C is in-
duced by 4d o + 6r. On the other hand, we already know that it is in-
duced by 3M + 3E. Since M and d o + 2F are equivalent on C, we see
that d o induces Hence C contacts d o to the third order at x =

Let v : be the blowing up at x, and put Ex = v -’ ( x ). We
denote by L1 the proper transform of d o by v. Then C is linearly equiva-
lent to v * (5J + 91’) + A on ~, and it contacts d to the second order at x.
Furthermore, is induced by H := + 21’) + J. We remark
that I H I is free from base points and induces a birational map of E onto
the image. Since we have an exact sequence
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we have H° (~, c~(H)) = It follows that is isomorphic to
0 H (C), Since 2H - C is linearly equivalent any hyper-
quadric through ø H (C) Hence ø K (C) is not cut out by
hyperquadrics. Q.E.D.

7. Surfaces of type (II).

Let S be a surface of type (II). Then the semi-caconical image V is of
degree 2n - 2 in Pn which is not a ruled surface. The following may be
well-known (due to M. Reid?):

LEMMA 7.1. Let V be an irreducible nondegenerate surface of de-
gree 2n - 2 in P n . Then the minimat resolution V of V is either a ruled
surface or a K3 surface. In the latter case, V is projectively norrnal and
has only rational double points as the singularity.

PROOF. We assume that V is not a ruled surface. Let r: V~ V be
the natural holomorphic map. We denote by H the pull- back by r of a
hyperplane section of V. We can assume that I HI is free from base

points. We take a general member C of [ H which is an irreducible non-
singular curve. Since ÎÍ2 = 2n - 2, C is of genus g(C) = H(K + H)/2 +
+ 1 = n + where K denotes the canonical bundle of V. Since T-(0 is
a nondegenerate curve in which is birational to C, Castelnuovo’s
bound (e.g. [7]) implies that g(C) ; n. It follows that KH 5 0. When
KH  0, since H is nef and big, all the pluri-genera of V must vanish.
Then, by Castelnuovo-Enriques criterion, V is a ruled surface. Hence
KH = 0 and g(C) = n . In particular, since C attains Castelnuovo’s up-
per bound, 7(C) = C and it is a canonical curve. Since a general hyper-
plane section is projectively normal, so is V. 

_

We next show that V is minimal. Let Vo be the minimal model of V,
and let a: V- Vo be the natural map. Letting Ko denote the canonical
bundle of V° , we have K = a-* Ko + [E] with an exceptional divisor E for
a. Since T is the minimal resolution, we have HE &#x3E; 0 whenever E # 0.

Hence, if E ~ 0, we would have 0’* KoH  0 and it would follow that Vo
is a ruled surface. Therefore, we have E = 0 and V itself is the minimal
model. 

_ _

Since KH = 0, V is of Kodaira dimension 0. By the Riemann-Roch
theorem, x(H) = n - 1 + Since mK is trivial for some positive in-
teger m, it follows from Ramanujam’s vanishing theorem that

= 0, and we clearly have H2 (H) = 0. Since = n + 1, we
get = 2. By the Enriques-Kodaira classification, we see that V is
a K3 surface.
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Since V is projectively normal, V is isomorphic to the image of V un-
der the holomorphic map associated I for any positive integer
k. It follows that any curve D with HD &#x3E; 0 cannot be contracted
to a point via z. Assume that HD = 0 holds for an irreducible curve
D on V. By Hodge’s index theorem, we have D 2  0. Since K is

trivial, the arithmetic genus of D is zero and D 2 = - 2. Hence D is a
( - 2 )-curve. In sum, we see that V has at most rational double

points. Q.E.D.

LEMMA 7.2, . Every surface of type (II) is regular.

PROOF. Let C be a general member of IL 1, and put B = OL (C). We
can identify B as a canonical curve of genus n in P n -1, and the natural
map v: C -~ B is of degree 2. Since L I c = v * KB , we have Kc = 3 v * KB .
Hence tre ramification divisor and the branch locus of v are line-

arly equivalent to 2 v * KB and 4KB , respectively. Then we have
It follows 

Hence = n. Since h1(L) = 0 by Proposition 1.1,
we get h 1 ((9s) = 0 as in the proof of Lemma 2.2. Q.E.D.

THEOREM 7.3. Let S be a surface of type (II). Let v: V- V be the
minimal resolution of its semi-canonicaL image V, and Let H be the
pull-back on V of a hyperplanes section of V Then S is birationally
equivalent. to a double covering of the K3 surface V defined in the total
space of [ 2H) by

where w is a fiber coordinate of [2H], and the A2i are in HO (V, n(2iH)).
In particular, the canonical image is cut out by hyperquadrics,.

PROOF. Note that we have HO(V, = H° (V, (9(k)) for any
integer 1~. By the Riemann-Roch theorem, we have = 4n - 2.
Since pg = 4n - 1 = h ° ( 2L ), there is a section ~ E Ho (2L) which is not
induced by (9v(2)). In we have the following ele-
ments :

where f: S - V is the natural holomorphic map. Since h ° (V, 0(4)) =
= 16n - 14, these represent 20n - 15 elements in total. On the other
hand, we have = h° (2K) = 20n - 16. It follows that there is a
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non-trivial relation among them. In this relation, the coefficient of ~ 2 is
not zero. Therefore, we have a relation of the form

It is easy to see that there are no further relations in the canonical ring
of S (modulo those already satisfied on V). Therefore, (7.2) defines a
double covering of V which is the canonical model of S. Via v, it induces
a double covering of V which is defined by eq. (7.1). Conversely, con-
sider a surface defined by (7.1). Since the dualizing sheaf w is induced
by 2H, we have = 4n - 1, = 0 and w2 = 16n - 16. There-
fore, if the coefficients are sufficiently general, we have a nonsingular
surface with the desired numerical characters.

The last assertion may be clear. Q.E.D.

8. Surfaces of type (IV): special case.

Let S be a surface of type (IV). We denote by f: ,S --~ V the holomor-
phic map of degree 4 induced by where V is a surface of degree
n - 1 in pn. It is known that V is one of the following (see,
e.g. [13], [3]):

(1) P2 , (n = 2).
(2) A quadric surface (n = 3).

(3) The Veronese surface (n = 5).

(4) A rational normal scroll of dimension 2, that is, the image of
id by the holomorphic map associated with + ((n - 1 + 
where n - 1 - d is a nonnegative even integer (n &#x3E; 4).

Our result can be summarized in the following:

THEOREM 8.1. Let ,S be a surface of type (IV). Then it is a regular
surface.

(1) Assume that n = 2. Then the canonical model of S is a weighted
completes intersection of type (4, 6) in the weighted projective space
P( 1, 1, 1, 2, 3) defined by

where (XO, xl , x2 , u, V) is a system of coordinates with deg xi = 1,
deg u = 2, deg v = 3 and the Ai , Bi are homogeneous forn2s of degree i
in the rj .
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(2) Assume that n = 3. Then the canonical model of ,S is a weight-
ed complete intersection of type (2, 4, 4) in the weighted projective space
P( 1, 1, 1, 1, 2, 2) defined by

where (xo , Xl, x2 , X3, u, V) is a system of coordinates with deg xi = 1,
deg u = deg v = 2, and the Ai , Bi , Ci are homogeneous of degree i
in the rj .

(3) Assume that n = 5 and V is the Veronese surface. Then the
canonical model of S is a weighted complete intersection of type (6, 8)
in P( 1, 1, 1, 3, 4) defined by

where (xo , Xl’ x2 , u, v) is a system of coordinates with deg xi = 1,
deg u = 2, deg v = 3, and the Ai , Bi are 4omogeneus forms of degree i in
the Xj. 

"

(4) Assume that n ;::: 4 and V is a rational normal scroll of di-
mension 2. Then L induces a holomorphic map f: S - 1: d of degree 4
such that K = f* [2L10 + ( n - 1 + d)r], where n - 1 - d is a nonegative
even integer. Furthermore, there exists an integer k with max ( d, 2 ) ~
~ k ~ (n + 1 )/2 such that S is birationally equivalent to a surface S * de-
scribed as follows: Let Wd, k be the total space of the 2-bundle

and let (u, v) denote a system of fiber coordinates. S* is a 4-sheeted
covering defined in Wd, k by

The canonical irza,ge is cut out by hyperquadrics when n ~ 3.

In this section, we restrict ourselves to the case that V is p2, a
quadric surface or the Veronese surface.
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LEMMA 8.2. For a surface of type (IV), 3 q ~ n - 1 holds.

PROOF. Let C be a general member of It is a nonsingular
curve of genus 6n - 5. We have hO(Klc) = 3n + q - 2 and deg K I c =
= 8n - 8. Since S is a canonical surface, IKlc I induces a birational map
of C onto its image. Then it follows from Castelnuovo’s bound that

g(C) ~ 7n - 3q - 6. Hence 3q - n - 1. Q.E.D.

LEMMA 8.3. Let C be a non-hyperelliptic curve of genus 11. As-
sume that Kc = 5M with a Line bundle M satisfying BslMI = 0,
h ° (M) = 2 and h ° ( 2M) = 4. Then C is a weighted complete intersection
of type (4, 10) in P(l, 1, 2, 5). In particular, the rational map associat-
ed with 4M ~ I is not birational onto its 

PROOF. By the free pencil trick, we have the following exact se-
quence for any i ~ 1:

Let x, be a basis for HO (M). Since h° (2M) = 4, there is an element
i e H°(2M) linearly independent from the products rirj. We have

= 8 and = 6 by the Riemann-Roch theorem. Hence JA 3
is surjective and we have a relation of the form

where the oci are homogeneous forms of degree i in (xo , xl ). Since tA4 is
of rank 10, there is a new element 77 E H° ( 5M). It is easy to see that tA i
is surj ective for i ~ 5 . In H ° ( 10M), we have 9 and

modulo the above relation. Hence there is another relation of
the form

Hence C is isomorphic to a weighted complete intersection of type
(4, 10) in P(I, 1, 2, 5). The last assertion is now clear. Q.E.D.

LEMMA 8.4. Let S be a surface of type (IV), and assume that the
semi-canonical images is P2, a quadric surface or the Veronese sur-
face. Then S is a regular surface.

PROOF. By Lemma 8.2, we can assume that V is the Veronese sur-
face. Then, we have a line bundle Lo such that L = 2Lo and |L0| I in-
duces a holomorphic map of degree 4 onto P2 . Let C be a general mem-
ber of . Since S is a canonical surface, C is a nonhyperelliptic curve



232

of genus 11. Consider the cohomology long exact sequence for

We have h 1 (c~s ) ~ h 1 (Lo) by (8.1) with i = 0. By Clifford’s theorem, we
have h° (2Lo I c) 4. If h° (2Lo (c) = 4, then it follows from Lemma 8.3
that I K I c I cannot induce a birational map of C. This contradicts that S
is canonical. Hence h ° (2L° ~ c ) = 3. Then (8.1) with i = 1 shows

= 0 since hl(2Lo) = = 0. It follows that S is a regular
surface. Q.E.D.

LEMMA 8.5. Let ,S be a surface of type with n = 2. Then the
canonical model of ,S is a weighted complete intersection in Theorem
8.1, (1). Hence the canonical model is not cut out by hyperquadrics.
More precisely, the quadric of the canonical image is a cone over
the Veronese surface (defined by v = 0).

PROOF. See [11), or one can show it is similar as in the next
lemma. ,

LEMMA 8.6. Let S be a surface of type (IV) with n = 3. Then the
canonical model of S is a weighted complete intersection in Theorem
8.1, (2). In particular, the canonical image is cut by hyper-
quadrics.

PROOF. Let xi , 0  i ~ 3, be a basis for H° (L). Since V is a

quadric surface in P3 , we have a quadric relation A 2 = 0 in the

xi . Therefore, the products span a 9-dimensional subspace of

H° (2L) = H° (K). Since pg = 11, we have two elements ç, Y) in Ho (K)
which together with Xi Xj form a basis for Ho (K). In Ho (2K) = C44,
we have the following elements:

quartics in the xi , (quadrics in the xi ) ~ , (quadrics in the 

ç 2, Y) 2 , çY) . °

Modulo A2 = 0, these present 46 sections. Hence we have two non-
trivial relations of the form

where is a quadratic form in I, q and the Bi are homogeneous
forms of degree i in the We have shown that OL can be lifted
to a holomorphic map of S into P(1,1,1,1, 2, 2) by putting u = ç,
v = 77. Since ø L induces a holomorphic map of degree 4 onto the
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quadric surface, the defining equation of the image can be normalized
as in Theorem 8.1, (2). Q.E.D.

LEMMA 8.7. Let S be a surface of type (IV) with n = 5, and as-
sume that V is the Veronese surface. Then the canonical model of S is a
weighted complete intersection in Theorem 8.1, (3). In particular, the
canonical image is cut out by hyperquadrics.

PROOF. Let Lo be as in the proof of Lemma 8.4. As we saw there,
we have = 0. By the Riemann-Roch theorem, we have x(L° ) _
= 14 and we get h 0 ( 3L° ) = 11. Let X2 denote a basis for H° (Lo ).
Then the products generate a subspace of dimension 10 in

Hence, we have a new We have
= = 19. In we have 18 elements:

(quartics in the ~

which are clearly linearly independent. Therefore, we have a new ele-
ment ~ E HO(4Lo). We have = 44 by the Riemann-Roch theo-
rem and Ramanujam’s vanishing theorem. In we have the fol-

lowing elements:

sextics in the xi , (cubics in the 

(quadrics in the Xi)t/J, ç2.

It follows that there is a non-trivial relation among them. In this rela-

tion, the coefficient of ~ 2 cannot be zero. Hence, we can assume that it
is of the form

We look at HO(8Lo) = H° ( 2K) which is of dimension 84. In HO(8Lo),
we have the following elements modulo the above relation:

octics in the xi , (quintics in the 

( quartics in the 

These represent 85 sections. Hence, we have a non-trivial relation of
the form

We have shown that S -~ P2 can be lifted to a holomorphic map into
P( I , 1, 1, 3, 4) by putting u = ~ and v = ~. The image is as in Theorem
8.1, (3). It is easy to see that it coincides with the canonical model.
Q.E.D.
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9. Surfaces of type (IV): general case.

We assume that n * 4 and that V is a rational normal scroll of di-
mension 2.

The following can be shown as in [8, Lemma 1.5]:

LEMMA 9.1. Assume that V is a cone over a rational curve

of degree n - 1 in P ~ ~ 1, n ~ 4 . Then the semi-canonical map can
be lifted to a holomorphic map 1: ,S -~ ~n _ 1 of degree 4 satisfying
L=f*[A0+(n-1)T].

Hence we have a holomorphic map f: of degree 4 satisfying
L = f * [do + ((n - 1 + d)/2) h] where n - 1 - d is a nonnegative even
integer. We put D = f* r. Since LD = 4, we see that D ~ I is a pencil of
curves of genus 5. We let A: denote the fibration induced by
I D 1. Then A, is of rank 5. Since K = f * [2A0 + (n - 1 + d) 1’], we
have a subsheaf p * 0(2J 0 + ( n - 1 + d) r) of A * ~ (K), where p : ~ d ~ Pl
is the projection map. The quotient bundle is of the form

o(nl) (D o(n2), nI :s:; n2 , and we have an exact sequence

Note that we have

LEMMA 9.2. If V is a rational normal scroll of dimension 2, then
S is a regular surface.

PROOF. Assume that S is an irregular surface. By [15, Theorem 1],
the slope of A is not less than 4, that is, K2 &#x3E; 4X((9s) - 16. Since the
equality holds here, it follows from [15, Theorem 3] that q = 1 and
A. co slpi is a direct sum of o and a semi-stable sheaf of rank 4. Hence
A, o(K) = o(n - 1)®4 ® 0( -2). Since (9.1) shows that o(n - 1 + d) is a
subsheaf of A,O(K), we get d = 0. Since h° (~ * n(K)) = 4n and
h 1 (a * 0 (K)) = 1, we have nl = - 2 and n2 = n - 1 in (9.1). This implies
that there is an element ~ E H° (K - (n - 1 ) D) which is not contained in

~ ( 24 ° ) ) . Let 1 be a general member. Then
must be strictly greater than 3 = On the other hand,

it follows from the cohomology long exact sequence for

that Hence S is not an irregular
surface. Q.E.D.
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LEMMA 9.3. Let S and D be as above. Then any general member of
I is a weighted complete intersection of type (4, 4) in the weighted

projective space P(l, 1, 2, 2) defined by

where (2:0,2:1, u, v ) is a system of coordinates with deg zo = deg zi = 1,
deg u = deg v = 2, and the Ai , Bi are homogeneous forms of degree i in
(zo , zl ).

PROOF. Let LD denote the restriction of L to a general member D
of Then LD induces a holomorphic map fD : D -~ Pl of degree 4. Let

. be a basis for H° (LD ). and C21 generated a sub-
space of dimension 3 in H° ( 2LD ). Since h ° ( 2LD ) = = 5, there
exist two new elements in H° ( 2LD ). We have = 12. In

we have the following 14 elements:

quartics in (quadrics in the

(quadrics in ~ 2, 77 2, 

Among them, the first 11 elements are clearly linearly independent.
Hence, we have two non-trivial relations of the form

where the c2~ are constants and the Ak , Bk are homogeneous forms of
degree k in ( ~ o , ~ 1 ). Since the matrix (cij ) is of rank 2, by a suitable lin-
ear change among ~ and "1), the relations can be normalized as

We cari lift fD to a holomorphic map into P(1,1, 2, 2) by putting
u = ~, v = ~ . Since D is nonhyperelliptic, the image is isomorphic to D.
Since fD is of degree 4, the case (ii) is inadequate. Thus we have (i).
Then, replacing ~ by I + A2 /2, we can assume that A2 = 0. By a similar
change of "1), we can assume that Bo = B2 = 0. Hence D is isomorphic to
the weighted complete intersection as in the statement. Q.E.D.

We relative the above lemma in order to get a birational model of &#x26;
Since pg=4n-1 and q=0, we have -1n1n2 and n1+n2=n-3
in (9.1). Putting k : := nl + 2, we get ~2 = n - 1 - k and 1 :s:; k :s:; ( n +
+ 1)/2. By the construction, we have two independent elements
~ E 1 - k ) D) and q E (k - 2 ) D ) which are not con-
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tained + (d + k) r) + (n + 1 + d - k)r), re-
spectively. Let C0 and C1 be sections of [40 ] and [Jo + dr], respectively,
such that they form a system of homogeneous coordinates on fibres of
~ : induce a basis for 

LEMMA 9.4. Let m be an integer with m &#x3E; d. Then h 1 (2K - (n -
- 1 - m) D) = 0 and (n - 1 - m) D) = 8n + 12m - 4, unless
(d, m) = (0, 0).

PROOF. By the Riemann-Roch theorem, we have

Note that K - (n - 1 - ) D = f * [ 24 ° + (d + Hence h 2 (2K - (n -
- 1 - m) D) = 0. Since (d, m) # (0, 0), K - (n - 1 - m) D I contains a
connected member. Hence H1 (2K - (n - 1 - m) D) = 0. Q.E.D.

Now, we are ready to prove Theorem 8.1, (4). For simplicity, we
shall use the following notation: For any nonnegative integer i, we let

i and y i represent elements in 

H°(24°+(2n+d-k-i)r) and ~(2~o +(~-l+c!+&#x26;- z)r), re-
spectively.

Since d £ n - 1, it follows from Lemma 9.4 that the restriction map
+ 2D) - H° ( 2KD ) is surjective and that + 2D) is of di-

mension 20n + 8. In Ho (2K + 2D), we have elements of the forms

which .generate a subspace of dimension 19n + 8, and

where (x°, x1 ) is a basis for H° (D). Since there are 3n elements in the
second group, we have at least 2n relations of the form

where bi and ci are homogeneous forms of degree i in ( xo , When
restricted to a general fiber D, they give only two independent rela-
tions described in the proof of Lemma 9.3. Let g and v be nonnegative
integers ivith g % v such that we can find relations
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in H° (2K - (g - 2) D) and

in H ° (2K - ( v - 2 ) D) which induce the independent relations in
Ho (2KD ). (In (9.4), we put «dash» in order to distinguish the notation
when g = v. ) We can choose (p., v) so that it is maximum in lexicograph-
ic order among those with such a property.

LEMMA 9.5. ~ = 2~ - 2~ and v = 2k - 2.

PROOF. If g &#x3E; 2n - 21~, then the left hand side of (9.3) is zero,
which is absurd. If v &#x3E; 2k - 2, then, in the left hand sides of (9.3) and
(9.4), the coefficients of Y)2 are both zero. Then, restricting to D, we
would get relations of the form (ii) in the proof of Lemma 9.3, which is
impossible. Hence we have g £ 2n - 21~ and v ~ 2k - 2. On the other
hand, since all the 2n relations of the form (9.2) must be derived from
(9.3) and (9.4), we get + 1) + (v + 1 ) &#x3E; 2n. Hence 4m = 2n - 2k and
v - 2k - 2. Q.E.D.

When 21~  n + 1, in (9.3), the coefficients of iq and Y)2 are both zero.
Hence we can assume ao = 1 and eliminate ~ 2 from (9.4) by using (9.3).
In this way, we get two independent relations

Even when 2k = n + 1, (9.3) and (9.4) can be reduced to (9.5) by a suit-
able linear change among ~ and q as in the proof of Lemma 9.3.

LEMMA 9.6. The condition k % max (d, 2) holds. In particulacr, the
exact sequence (9.1 ) splits.

PROOF. We put G = f* 4 o .

We first show that k % d. Since k % 1, we assume that d ~ 2. We as-
sume that k  d and show that this leads us to a contradiction. Since

~ E H° (2G + (d + k) D), we have
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We have

Hence a2n - 2x , N2n - 2x and Y2n - 2k vanish identically on L10 It follows
from (9.5) that vanishes identically on G. When 2k = n + 1, we simi-
larly see that and n both vanish identically on G. Hence, we have

[ =G+ .

Assume that 2(d + k) 5 n - 1 + d. Since L = G + ((n - 1 + d)/2)D
and since h°(L) = h°(do + ((n - 1 + d)/2)1’) = n + 1, we get h°(2G +
+ (d + k)D) = h 0 (,1 o + (d + k)1’) = d + 2k + 2, which contradicts (9.6).
Assume that 2(d+k)&#x3E;n-1+d. We put m=d+k-(n-1+d)/2
and choose m general members Dl , ... , Dm of D ~ . Since = 0 by
Proposition 1.1, we get h°(G + (d + k)D) = n + 1 + 2m = d + 2k + 2
from the cohomology long exact sequence for

Hence we get h° (2G + (d + k) D) = d + 2k + 2 which again contradicts
(9.6).
We next show that k = 1 is inadequate. Assume that (d, k) _ (0, 1).

We can assume that G is a nonsingular curve which is non-hyperellip-
tic. We consider the cohomology long exact sequence for 

"

Since DG = 4, we get h° (O~ (D)) ~ 2 by Clifford’s theorem. Since G +
+ D = L - ((n - 3)/2),wehaveh°(G + D) = + r) = 4andh2(G +
+ D) = h° (L + ((n - 3)/2)D) = 2n - 2. It follows from the Riemann-
Roch theorem that + D) = 0. Hence, h° (2G + D) = h° (G + D) +
+ h° (O~ (D)) ~ 6. On the other hand, we have h° (2do + r) = 6. Hence
h°(2G + D) = h°(2do + r) and ~ cannot be in H°(2G + D).

Assume that (d, k) = (1, 1 ). We choose a general member C e G +
+ D ~ I and consider the cohomology long exact sequence for

We can assume that C is a nonsingular curve of genus 2n + 3 which is
nonhyperelliptic. Then, we have h ° ( 2D ~ c ) ~ 4 by Clifford’s theorem.
Similarly as in the previous case, we can show that + D) = 3 and
hl (G + D) = 0. It follows h° (2G + 2D) = h° (G + D) + h° (2D ~ c) ~ 7.
On the other hand, we have /~(2~o+2r)=6. Hence, if ~ is in

H° (2G + 2D), we must have h° (2G + 2D) = 7 and = 4. Since
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the canonical bundle of C is induced by (n + 1 ) D and since = nD C,
we have = 2n by the Riemann-Roch theorem. We denote the
restrictions of the xi and ~ to C by the same symbols. Then 1
and ~ form a basis for Restricting the first equation of (9.5)
to C, we have

where the Gi are homogeneous forms of degree i in xl ). This is a re-
lation in Modulo (9.7), we have 2n elements 

xj xf - 2 - i ~ in Since these are clearly linearly indepen-
dent, (9.7) implies that the image of C under the canonical map of S
is an elliptic curve. This contradicts that S is a canonical sur-

face. Q.E.D.

Let Wd, k and (u, v) be the same as in Theorem 8.1, (4). If we put
u = ~ and v -~, we can lift f: to a map h: S - Wd, k . By (9.5), we
see that ,S * = h(S) is defined in Wd, k by the equation in Theorem 8.1,
(4). We remark that there are no further relations among ~, 72. Hence S *
is the canical model (possibly partially resolved its rational double

points). Conversely, it follows from (9.5) and Lemma 9.6 that the sur-
face S * defined by the equation in Theorem 8.1, (4) is nonsingular pro-
vided that the coefficients are sufficiently general. Furthermore, its

dualizing sheaf ms* is induced by [ 24 ° + (n - 1 + d ) 1’]. To see this, we
consider a compactification

of Wd, k . Let To denote a tautological divisor. Then S * is a complete in-
tersection of two hypersurfaces linearly equivalent to 2 To + 2 M* (24 0 +
+ (d + k)r)and2To + 2 ~* (2,J 0 + (n + 1 + d - ~)r), respectively. Since
the canonical bundle of is induced by - 3 To - ~’’‘ (640 + (n + 3 +
+ 3d)r), we see that the dualizing sheaf of ,S * is induced by To +
+ m* (240 + (n - 1 + d)r). Since [ To ] is trivial on ,S * we see that cos.
comes from [ 24 0 + (n - 1 + d)r] as desired. By a spectral sequence ar-
gument using the Koszul resolution
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we can show that H° (T° + m* (24° + (n - 1 + d) r)) is restricted onto
isomorphically. Note that + 111* (2Jo + (n + 1 + d -1~ ) r) ~ I

induces a birational map of Wd, k onto the image. Since we have I~ ~ 2 by
Lemma 9.6, S * is surely a canonical surface. Hence S * is an even
canonical surface with K2 = 4p~ - 12, q = 0 as a standard calculation
shows.

It should be clear from (9.5) that the canonical image of ,S is cut out
by hyperquadrics. In sum, Theorem 8.1, (4) has been shown.

10. Final remarks.

The results in the preceding sections imply the following:

THEOREM 10.1. Let S be an even canonical surface with K2 =

= 4p9 - 12, q = 0. Assume that the canonical image X is cut out by hy-
perquadrics. Then I K I is free from base points and X is projectively
normal.

, THEOREM 10.2. Let S be an irregular even canonical surface with
K2  4x( ns ) - 12. Then S a pencil of trigonal curves and the quadric
hull of the canonical image X containing X is of dimension 3. In par-
ticular, Reid’s conjecture [14, p. 541] is true for even surfaces with
q=1.

PROOF. Since S is an even surface, we can assume that K2 = 4X -
- 16 by [Part I, Theorem 8.4]. Then, as we saw, S is of type (III) or (V).
Hence S has a pencil of trigonal curves. The rest follows from [Part I,
Theorem 8.3]. Q.E.D. 

REFERENCES

[1] A. BEAUVILLE, L’application canonique pour les surfaces de type
général, Invent. Math., 55 (1979), pp. 121-140.

[2] DEL PEZZO, Sulle superficie di ordine n immerse nello spazio di n + 1 di-
mensioni, Rend Acad. Napoli, (1885).

[3] T. FUJITA, On the structure of polarized varieties with 0394-genus zero, J. Fac.
Sci. Univ. Tokyo, 22 (1975), pp. 103-115.

[4] T. FUJITA, On the structure of polarized manifolds with total deficiency
one, I, II and III, J. Math. Soc. Japan, 32 (1980), pp. 709-725; 33 (1981),
pp. 415-434; 36 (1984), pp. 75-89.

[5] T. FUJITA, On polarized varieties of small 0394-genera, Tôhoku Math. J., 34
(1982), pp. 319-341.



241

[6] T. FUJITA, Projective varieties of 0394-genus one, in Algebraic and Topological
Theories - to the memory of Dr. Takehiko Miyata, pp. 149-175, Kinokuniya
Book Store (1985).

[7] J. HARRIS, Curves in Projective Space, Lecture Notes, Le Presses de l’Uni-
versité de Montreal (1982).

[8] E. HORIKAWA, Algebraic surfaces of general type with small c21, I, Ann.
Math., 104 (1976), pp. 358-387.

[9] E. HORIKAWA, Notes on canonical surfaces, Tôhoku Math. J., 43 (1991), pp.
141-148.

[10] K. KONNO, Algebraic surfaces of general type with c21 = 3pg - 6, Math.
Ann., 290 (1991), pp. 77-107.

[11] K. KONNO, Even surfaces with pg = 7, q = 0 and K2 = 16, Math. Rep.
Kyushu Univ., 18 (1991), pp. 15-41.

[12] K. KONNO, Even canonical surfaces with small K2, I, Nagoya Math. J., 129
(1993), pp. 115-146.

[13] M. NAGATA, On rational surfaces, I, Mem. Coll. Sci. Univ. Kyoto Ser. A,
32 (1960), pp. 351-370.

[14] M. REID, 03C01 for surface with small K2, Lec. Notes in Math., 732, pp. 534-
544 Springer (1979).

[15] G. XIAO, Fibered algebraic surfaces with low slope, Math. Ann., 276 (1987),
pp. 449-466.

Manoscritto pervenuto in redazione il 22 novembre 1993.


