
RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITÀ DI PADOVA

J. W. S. CASSELS
Computer-aided serendipity
Rendiconti del Seminario Matematico della Università di Padova,
tome 93 (1995), p. 187-197
<http://www.numdam.org/item?id=RSMUP_1995__93__187_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1995, tous
droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico
della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RSMUP_1995__93__187_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Computer-aided Serendipity (1) (2).

J. W. S. CASSELS (*)

Number Theory is an experimental science. Unexpected regulari-
ties are noticed in the results of calculations and only subsequently are
explanations and proofs found. For example, the Law of Quadratic
Reciprocity was known by experiment to Euler and others long before
the first complete proof was found by Gauss: and Gauss’ first proof is a
verification of a kind which would not have suggested itself if the Law
was not already known empirically. The advent of electronic computers
has revolutionized the possibilities of numerical experimentation and
so greatly increased the number of theorems suggested in this way and
of conjectures still awaiting proof. Another boon of computers is that
one can often easily test a conjecture suggested in other ways: it would
be foolish to expend intellectual energy in attempting to prove it if a
little experimentation produces a counter-example.

I am not a computer expert, but I am fortunate in having friends
who are, and in having been a witness of early developments. The first
approaches to electronic computing were made during the war with
specialized devices for ballistic or cryptographic purposes. They lacked
versatility, and if you wanted to do another calculation you had to un-

(1) «Coined by Horace Walpole upon the title of the fairy tale "The three
princes of Serendip", the heroes of which "were always making discoveries, by
accident and sagacity, of things they were not in quest of".» Serendip is an old
name for Sri Lanka = Ceylon. An often quoted example is looking for a needle in
a haystack and finding the farmer’s daughter.

(1) Lecture given in Padova in October 1993 and elsewhere.
(*) Indirizzo dell’A.: Department of Pure Mathematics and Mathematical

Statistics, University of Cambridge, 16 Mill Lane, Cambridge CB2 1SB,
U.K.
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plug and replug wires or something of the sort. At least in Cambridge,
it is claimed that the true mark of an electronic computer is that it will
read in, store and act on a program. I was present at a demonstration
in, I think, May 1949 of almost the first program on the very first com-
puter EDSAC. This was a roomful of equipment but was laughably
weak by today’s standards. Slowly it printed out the prime numbers up
to 100. At least this is what it was supposed to do, but it printed out the
squares of primes as well: the program contained a bug!

There was no such profession as computer science in those days.
Several of my fellow research students in number theory found the
challenges of the new discipline congenial and moved into it. I might
add that I have always encouraged my research pupils to learn about
computers. Apart from the more obvious advantages, if they turn out
not to be creative mathematicians they will, at least, have acquired a
saleable skill.

There were computers before there were electronic computers. In
particular, there were machines which operated cards prepared by
punching holes. The machine sorted them by sensing the holes mechan-
ically or, later, optically. These machines were primarily for business,
but were occasionally used for mathematics. One application was’to
Waring’s Problem, that is for given n (say n = 5) to finding an s such
that every positive integer x is the sum of at most s n-th powers of posi-
tive integers. The analytic approach naturally produces an s such that
this is true for all large enough x, say for x &#x3E; xo . Then to get an elegant
formulation one has to check for the remaining r % xo . This was a
drudgery for which the punched card machines were well suited. The
Soviet mathematician Buchstab (1940) made a more sophisticated ap-
plication. For a sieving problem he defined a function recursively: to
evaluate it he used punched cards. Incidentally, the shape of the

punched cards is still reflected in the procrustean format of the FOR-
TRAN statement.

Although electronic computers were developed for less serious pur-
poses, they were soon used for number theory. Perhaps the earliest ap-
plication was by von Neumann and Goldstine (1953) to a conjecture of
Kummer about the distribution of certain trigonometric sums involv-
ing a cubic residue character ( « Kummer sums»). Kummer had made
the conjecture on the basis of hand calculations. Von Neumann and
Goldstine carried the calculations much further and destroyed its plau-
sibility. Programming was a much more exacting art then, both be-
cause of the feeble power of the machines and because the modern pro-
gramming languages did not exist, so it all had to be done in «machine
code». The programmer was Mrs Atle Selberg. The problem has now
been cleared up by R. Heath-Brown and S. J. Patterson (1979).
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Before proceeding further, we must recall some facts about elliptic
curves over the rational 

For present purposes, an elliptic curve e over Q is given by

where the aj E ~, and the polynomial on the right hand side has no re-
peated factors. A point 3i = ( x, y ) on e is said to be rational if x, y 
There is a single point on e at infinity, which is also rational by defini-
tion. A fundamental fact, which we do not prove here, is that the set C~
of rational points on e form an abelian group with o as zero. One
puts

precisely when the rj are collinear (Figure 1): in particular,

The difficult thing is to prove that addition is associative.
A celebrated result is Mordell’s finite basis theorem: the group

0153 is finitely generated. This, I note in passing, is a splendid example
of serendipity, though not computer-aided. He was aiming at some-

Fig. 1.

(3) For a fuller discussion in the same vein see, for example, the author’s book
Cassels (1991).
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thing quite different. Later, that was proved by Siegel: the finite
basis theorem being a key ingredient (4).

We shall need to know a little of the ideas which enter into a modern

proof of Mordell’s theorem, and consider the special case

with distinct ej E Z. If (x, y) is a rational point on e, it is easy to see that
there are u, v, t e Z such that X = ujt2, y = are fractions in their
lowest terms. It follows that

It is readily verified that the greatest common divisor of the first two
factors on the right hand side divides el - e2 etc., and so, taking the
squarefree kernels of the three factors we have

for some sl , s2 , S3 where the triplet ml , m2 , m3c= Z is from a finite
set. On eliminating u from (6) we get the following three simultaneous
quadratic equations in of which only two are indepen-
dent :

The triplet {mi, ’Yn2, corresponds precisely to the the class of
g = ( x, y ) E G modulo 2(B. To see why there should be this link between
the expressions (6) and the group structure of 0153, we suppose that e is
given by (4) and that the points rj=(xj,yj) of figure 1 lie on the line
Y = IX + n. The values of the Xj are obtained by eliminating Y, and so
are given by

(~) For a historical discussion, see Cassels (1986).
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On substituting an ej for X we see that

is a square. It is not difficult to supply the rest of the argument. The
proof of finite generation now uses a different type of argument that we
do not need to go into here. Since it easy to determine the torsion

part (5) of @j, a knowledge of the number of triplets m2 , for
which (7) is soluble gives the rank of (S (the number of generators of in-
finite order). Similar results apply to a general e not of the special form
(4).

Note that we have shown that the rank of (S is finite, but we have no
way to determine that rank, even in principle. All we have is an upper
bound. To get the precise rank, we should have to decide for given
I ml, m,2 , whether there is a of (7) or not.
For a long time there was no infallible decision procedure: as the logi-
cians would say, the rank was not effectively computible. It is only in
the last few years that this situation has begun to change.

If we can prove that some more of the equations (7) are insoluble,
we get a sharper bound for the rank. We recall the theory of a single
equation

where F is a quadratic form with rational coefficients. The equa-
tion

has no solution (6) in Q as there are none in the real field R. Similarly,
the equation

has no solution in Q on considering the behaviour (7) of a possible sol-
ution modulo powers of 3: that is, there is no solution in the 3-adic field

We say that a Diophantine equation is «everywhere locally soluble»
if the are solutions in R and in every p-adic field Qp and that it is «solu-
ble globally» if there is a solution in Q. Hasse succinctly reformulated

(~) Only the 2-primary part is relevant here.
(6 ) As always, we exclude the trivial solution in which all the variables are 0.
(7) For y, 2:} is a solution, we may suppose that x, y, z have no com-

mon factor. Then x, y must be divisible by 3, and (12) now implies that z is divisi-
ble by 3. Contradiction!
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existing criteria for the solubility of a single equation (10), where F is a
quadratic form: «If there is a solution everywhere locally, then there is
a solution globally». There are other situations to which such a state-
ment applies. It is known as a «Hasse principle» or «local-global
principle-.

There is no local-global principle for simultaneous equations of the
type (7). For any we can, however, always decide
whether (7) is everywhere locally soluble. This gives a better upper
bound for the rank of (M. We can check whether this bound is the actual
rank by searching (preferably by machine!) for solutions. If one can
produce a solution for all the everywhere locally soluble (7), then the
upper bound is the actual rank. If a thorough search fails to find the re-
quired solutions, then there is a strong suspicion that the rank is small-
er than the upper bound. As a matter of experimental observation, the
upper bound is usually attained. But not always. After extensive com-
putations Selmer (1954) made the totally unexpected conjecture: the
difference between the upper bound and the actual rank is always
even.

Actually Selmer worked not with general curves (1) but with

where A E Z is given. For this he found upper bounds for the rank by,
methods in which, roughly speaking, multiplication by 3 [more precise-
ly, multiplication by V--31 replaces multiplication by 2. He made ex-
tensive calculations by hand and completed them in one of the earliest
uses of a computer(8) The curve (13) is birationally equivalent over 0
to

which is of type (1). Hence there is a bound for the rank via 
Selmer found evidence that the difference between the two bounds is

always even.
The most plausible way in which even numbers naturally arise is as

the rank of a skew-symmetric matrix. In the mean-time, for any elliptic
curve e Tate and Shafarevich had constructed a group, usually denoted
by III, which gives the obstruction to a local-global principle. With sev-
eral years’ hard work I managed to find(9) a skew-symmetric form on

(1) Selmer exemplifies the early connection between number theory and com-
puters. He has been called the father of computer science in Norway.

(9) Cassels (1962). For generalizations see Tate (1962) and Milne (1986).
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III whose kernel is the set of infinitely divisible elements. If one as-
sumes that the only infinitely-divisible element is 0, this implies
Selmer’s conjectures.
We now come to the celebrated conjectures of Birch and Swinner-

ton-Dyer (1965), which arose from a search for some quantitative local-
global principle for elliptic curves analogous to Siegel’s quantitative lo-
cal-global principle for quadratic forms. We were then colleagues in
Cambridge, so I had a ring-side seat. As I remember it, the conjectures
were gradually refined from a vague hunch by the interaction of com-
puter experiments and theoretical considerations. The final conjecture
connects a quantity depending on 01 with the behaviour of an L-function
attached to the curve. There was one missing piece: a number occurred
which could not be accounted for. For most of the curves investigated
this number was 1: it was always an integer, though there was no obvi-
ous reason why this should happen, and indeed it was always a square.
The skew-symmetric form on III ensures that its order, if finite, is a

square, so a natural guess was that this was the unidentified number.
This was then supported by other evidence.

The Birch-Swinnerton-Dyer conjectures have set the agenda for
much that has happened since. They have been widely generalized and
tested, but only recently are proofs beginning to emerge.

One check on the truth of these conjectures is that they can predict
the existence of points on curves which are not immediately apparent.
Andrew Bremner observed that for prime p the Birch-Swinnerton-Dy-
er conjectures imply the existence of a generator of infinite order on
the curves

in addition to the point (0, 0) of order 2, and he devised a technique to
look for it. I was roped in to the search. We looked at p % 1000. For p =
= 877 the generator is (u/v, rls), where

(Cassels and Bremner (1984)). In fact the existence of these generators
is predicted by the Selmer conjecture, but Birch-Swinnerton-Dyer
even predicts the size of the numbers (the height of the generator).
Bremner (1988) and Bremner and Buell (1993) have carried the search
further. Other examples of generators of great height have been given
by Zagier.
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We now change the subject to cubic surfaces f (X, Y, Z, T) = 0,
where the cubic form f has rational coefficients. Mordell conjectured
that there is a local-global principle and there were proofs for surfaces
of some special types. For example, Selmer showed that the principle
holds for «diagonal» cubic surfaces

provided that is a rational cube. However Swinnerton-Dyer gave
an ingenious example of a form for which the local-global principle fails.
There remained the possibility that the principle holds for all «diago-
nal» surfaces, whether or not they satisfy Selmer’s condition. This
seemed to me unlikely. At that time Mike Guy was my research stu-
dent and already hooked on computers. I suggested that he look for a
likely counter-example. So he programmed the computer to look for all
surfaces (17) with coefficients up to 50 which (i) are everywhere locally
soluble and (ii) have no solutions with the variables up to 50. In the
primitive state of computers at the time this was no small achievement.
There was a snag. The demand for computer time was high and pro-
grams had to be fed in directly, no on-line facilities. Consequently keen
users, particularly if they were junior, did all their work at night. I am
a normal sort of chap who works by day. Although I knew at second
hand that Guy had a list of potential counter-examples, I could not get
them. This deadlock persisted for some time. Finally, John Horton
Conway, who works both by day and by night, gave me, not the whole
list, but what he thought was the simplest specimen

I took this with me on holiday. Fortunately from this point of view, the
weather was atrocious: I had plenty of time to think, and was able to
prove that there is no global point (Cassels and Guy (1966)).

Note that although the computer was crucial to the discovery, it
does not affect the logical status of the result. This would have been ex-
actly the same if the Angel Gabriel had appeared to me in a dream and
said «why not try (18)?». In fact the simplest counter-example on Guy’s
list is not (18) but

which involves only two primes, while the coefficients of all the other
listed forms contain at least three. Bremner (1978) showed by a rather
different argument that there are no global points on (19).

Manin (1974) has produced a rather sophisticated invariant, which he
conjectures is the only obstruction to the local-global principle for cubic
surfaces. For «diagonal» surfaces Colliot-Th6l6ne, Kanevsky and San-
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suc (1987) give supporting computational evidence. They confined at-
tention to diagonal surfaces because it is difficult to teach even a power-
ful modern machine to compute Manin’s invariant for general forms.

We conclude with a problem of a very different type. Let
E C[Z], be polynomials with complex coefficients.

When does

have a factor in C[X, Y]? A familiar example is f = g, when there is the
factor X - Y, or, more generally, f (X) = H(F(X)), g(Y) = H(G(Y)) with
factor F(X) - G(Y). Davenport, Lewis and Schinzel (1961) found anoth-
er example. Let

be the 4th Chebyshev polynomial. Then

More generally, take f = T4(F(X)), g(I~ _ -T4(G(~). Davenport,
Lewis and Schinzel were rash enough to suggest that this exhausts the
possibilities.

It seemed a good idea to look at the associated Riemann surfaces.
The equation f (X) = Z gives a covering of the Riemann sphere of Z,
and similarly for = Z. We can combine the coverings by looking at
the pair (X, Y) over Z, where

Then f (X) - factors precisely when the covering (22) consists of
more than a single piece. This reduces the problem to a purely combi-
natorial one about the behaviour at the ramification points. The most
promising case is when f, g have the same degree n (say). Mike Guy
programmed this on EDSAC2, the successor to EDSAC, and he got as
far as n = 12 before EDSAC2 was killed: its memory was required for
the newly-acquired TITAN (1°), which was much more powerful but
which, as happened in those days, required programming in an entirely
different way.

Guy found new solutions of the combinatorial problem for n = 7, 11.

(10) TITAN was a cut-down and modified ATLAS, a computer much ahead of
its time. It is a tragedy of British post-war economic policy that resources were
refused to develop it, but lavished on such clearly uneconomic prestige projects
as Concorde.



196

This left the question of finding the corresponding polynomials f and g.
We were still pondering how to do this when Bryan Birch visited Cam-
bridge. Guy told him the problem over lunch and Bryan then and there
found the polynomials for n = 7. Over dinner he found those for n = 11.
The polynomials for n = 7 contain a parameter t. With

put

Then

where

The formulae for n = 11 are similar, but more complicated and without
a parameter.

I talked about this at the 15th Scandinavian Congress (Cassels
(1968)), where I learned that Tverberg had found the 7 factorization
from a different point of view. Subseqently it has been shown that the
classification of the simple finite groups (!) implies that there are essen-
tially only finitely many further such curious factorizations, and they
have all been determined, at least as sphere coverings (Feit (1980)).

I learned only recently that Birch had already been considering cov-
erings of the Riemann sphere in a different context. They are also the
starting point of an unpublished research program of Grothendieck
which has attracted much attention recently and which was the theme
of a recent conference at Luminy. [See: The Grothendieck theory of
dessins d’enfants (ed. L. Schneps), LMS Lecture Notes, 200
(1994).]

I hope that I have now said enough to convince you of my thesis that
the theory of numbers is an experimental subject and that nowadays
the sensible way to experiment is usually on a computer.
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