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A Modal Logic of Consistency.

N. BRUNNER (*)

ABSTRACT - The modal propositional logic which is defined by the interpretation
of possibility as consistency by means of the Fraenkel-Mostowski method for
proving independence results about the axiom of choice in ZFA set theory is
Lewis’ system S 5.

1. Introduction.

Mc Dermott’s theory of non-monotonic reasoning motivates investi-
gations of modal logics of consistency. As follows from Solovay [12], if
in the context of PA the modality 0 is interpreted as consistency, then
the corresponding modal sentential calculus is G. As Solovay has not-
ed, semantical restrictions lead to extensions of this system. It is possi-
ble, however, to give an interpretation of S 5, as has been shown by
Forster [7], who in the context of NF has interpreted the modality 0 as
consistency by means of Bernays-Rieger permutation models. The pur-
pose of this note is a proof of a similar result for Fraenkel-Mostowski
permutation models. The major step in this proof is the observation,
that iterations of this construction again give Fraenkel-Mostowski
models.

The main result of this paper might appear to be in contrast with
the proof of Solovay’s theorem, where the use of a formalized notion of
consistency enforces the validity of W (EI(El~ ~) --* 00). In the

present context, however, models are proper classes for which only lo-
cal notions of truth are available. The assertion «a is true in the permu-
tation model PM» is expressed by the relativization of a to PM. It is in-
vestigated in the set theory FM of all ZF-sentences which are valid in

(*) Indirizzo dell’A.: Dept. Math., Univ. Bodenkultur, Gregor - Mendel-Str.
33, A-1180 Wien.
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each permutation model (as a class of the real world V of ZFC.) The fail-
ure of W is not due to a peculiarity of FM, but rather to an extended in-
terpretation of the word «model» (c.f. Boolean valued «models».)

1.1 NOTATION. Unless stated otherwise, we shall work in ZFA.
ZFA is a variant of ZF set theory without the axiom of choice (AC)
which permitts the existence of a set of atoms (objects without ele-
ments ; c.f. Jech [9].) In the real world V of ZFA from X E V a ZFA uni-
verse V(X) is constructed as follows (our construction is due to

J. Truss): Vo = X x ~ 0 }, Va = ~ (A, « ) : « E On minimal such that

A c U (Vp : V(X ) = U ~ V« : « E On }, and in V(X) iff in V

y = ( z, a), « &#x3E; 0 and x E z. The elements of Vo are atoms, the empty set
is (0, 1). Given a group generated (the unit element has a neighbour-
hoodbase consisting of open groups) T2-group (G, G) and an injective
homomorphism d : G - S(X) into the symmetric group (in V), then a
Fraenkel-Mostowski model PM c V(X) of ZFA is constructed as fol-
lows : The group action d is extended recursively to d on V(X) via
d(g)x = d(g)" x = ( d(g)y : y e r) and for x E V(X) and x c PM x E PM,
iff its stabilizer is open, i.e. stab ( x ) = { g E G : (dg)x = x } e G. (We re-
fer to Brunner [4] for more details.) We shall always assume, that PM
contains all the atoms in Vo of V(X); i.e. the topology of pointwise con-
vergence Gm c G in the notation of [4].

1.2. The axiom of choice for pure sets is preserved in the passage
from V to PM. If V satisfies AC, then the validity of choice principles
(Boolean combinations of Jech-Sochor bounded statements) depends
only on the generating topological group of PM, but not on its group ac-
tion ([4]). Thus for instance PM satisfies AC, iff its automorphism
group is discrete, and PM satisfies the axiom of multiple choice, iff its
automorphism group is locally compact (Mathias and [3].) The relevant
topology for these results is Gnat which is generated by the subgroups
stab (x), x E PM: In view of [3] the automorphism group with this
topology generates PM (and it contains an isomorphic copy of each gen-
erating group) and in view of [4] for each group generated T2 group
(G, G) there is a permutation model such that G = Gnat generates that
model. This correspondence is not one to one, since a group G and its
subgroup H generate the same model, if H is not nowhere dense ([3]).

2. Iterated models.

We now investigate the models which are obtained, if the above
constructions are performed within a given Fraenkel-Mostowski model
PM. Such models QM come in three steps:
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i) Construction of a model PM c V(X) from a group G as

above.

ii) For a set Y e PM construction of the model V(Y) within PM;
the resulting model is PM(Y) c V(X)(Y).

iii) For a topological group H E PM and a group action t: H -

(Y) in PM (S PM is the symmetric group within PM) the construc-
tion of a Fraenkel-Mostowski model within PM; as in (i)
we assume H~ c HPM (HPM denotes the group topology on H in PM).

We shall imitate these construction in V by means of quotients and
semidirect products to prove the following result.

THEOREM. In V there is a Fraenkel-Mostowski model QM’ which
is E -isomorphic with QM.

2.1. We first investigate step (ii). A converse of the following lem-
ma is true, too, and will be proved in section 2.2.

LEMMA. For Y E PM the structure PM(Y) is E -isomorphic with a
Fraenkel-Mostowski model PM’ in V(Y) which is generated by a quo-
tient of an open subgroup of G.

PROOF. By means of Mostowski’s collapsing lemma (c.f. Blass, Sce-
drov [2], Theorem 1B1) the structure V(X)(Y) is isomorphically embed-
ded into V( Y). Since an open subgroup generates the same model as the
supergroup (c.f. Brunner, Rubin [3]), for the ease of the notation we
shall assume, that PM is generated by G = stab Y. We show, that the
collapsing image of PM(Y) (also denoted by PM( Y)) equals the model
PM’ c V(Y) which is generated by the quotient G’ = G | p-stab Y, where
p-stab ( Y) = {stab (y) : y E y} is the pointwise stabilizer of Y, and
the induced action d’; i.e. d’ ([g]) y = d(g) y for 
and [g ] = g - p-stab Y. We note, that d ’ is a welldefined inj ective homo-
morphism G ’ -~ ,S( Y) and p-stab Y is a closed and normal subgroup of G,
whence G’ is a T 2-group. Moreover, since for x E V(Y) by the definition
of the quotient topology stabG , x is open, iff U stabG , x E G (c.f. Hewitt,
Ross [8], Definition 5.15) and the latter set is stabg X (definition of d’),
it follows, that PM’ contains all the atoms in Vo of V( Y), as does PM( Y),
and by induction on the rank it follows, that PM’ = PM(Y). For if

and then x E PM( Y), iff stabG x E G, iff

stabG, x E G’, e.o.p.
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2.2 REMARK. If G = Gnat , then under the assumption of AC in V
for each closed and normal subgroup H of G there exists a set X e PM
such that stab X = G and p-stab X = H.

PROOF. Gnat is the topology which is generated by the subgroups
stab x, x E PM. If K is a subgroup of G, then K ~ H is a subgroup, too,
since H is normal. Moreover, if K is open, so is K ~ H. Since the topology
G is group generated, H = n ~ K ~ H : K is an open subgroup of G}, for
if g E f1 ~ ... ~, say g = gK ~ hK such that and then if the

open subgroups K are viewed as a net, ordered by reverse inclusion, it
follows that lim gK = 1, whence lim hx = lim 9il. g = g and so g e H,
since H is closed. Since G = Gnat , for each open subgroup K of G there
exists a set xK E PM such that = K ~ H (c.f. Brunner [4]). We
set X = U I orbg xK : K is an open subgroup of G}, where orbg X =

E G} E PM. Since stab X = G, X E PM. We next calculate

since H is a normal subgroup of G. e.o.p.

It follows, that each factor group generates some model PM(X). For
example, there exists a countable No-categorical relational structure a,
such that the finite support model PM which is generated by the auto-
morphism group Aut a contains a model PM(X) which is essentially the
second Fraenkel model (in the terminology of Jech [9], i.e. it is generat-
ed by Z2 ); c.f. the discussion in Cameron [5], p. 108.

2.3. If G, H are groups and r: Aut H the group of

group-automorphisms of H, is a homomorphism, then the semidirect
product (wreath product) is the following group G = H x G with
the multiplication (h, g) ~ (h’ , g’ ) _ (h ~ ~(g)(h’ ), g ~ g’ ). If (G, G) and
(H, H) are topological groups, then H G is a topological group with
the product topology, if the map H x ( h, g) --~ z(g ) ( h ), is onto
and continuous (c.f. Hewitt, Ross [8], Examples 2.6. and 6.20).
We apply this construction to a topological group H E PM, where as

before PM is generated by the topological group (G, G) and the group
action d. We let HPM be the group topology of H in PM. It is a base of a
group topology HI on H in V(X). The mapping is induced from the
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group action of G : c(g)(h) = d(g)(h). In order to ensure, that this defi-
nition is meaningful, we assume, that G c stab (H, HI). Then obvious-
ly in V ~: G ~ Aut H is a homomorphism such that (h, g) - c(g)(h) is
onto H.

LEMMA. The semidirect product H ~’r G of the topological groups
(H, Hv) and (G, G) is a topological group.

PROOF. We show, that in V the map (h, g) -~ d(g)(h) is continuous.
Since HPM is a base for Hv for ho, h1 E H, go E G and a subgroup
Hl E HPM such that d(go)(ho) E H1 it suffices to find subgroups
G2 E G and H2 E Hv such that for all g2 E G2 , h2 E H2 the image h =

E hI HI. We let H2 be the preimage H2 = 
which is an open subgroup in PM, since G c stab HPM. Hence G2 =
= stab honstab H2 is open, too. Thus

2.4. The natural action of the semidirect product H G on the it-
erated model QM c PM(Y) appears to be (h, g)x = t(h)(d(g)(x)), where
x E QM, d(g ) is the extension of d(g ) from Y to PM(Y) and t(h) is the ex-
tension of t(h) from Y to QM. It is, however, not faithful, whence we
shall consider a factor group (H &#x3E;41" G)IK. In order to ensure, that the
action makes sense, we need to assume, that G c stab (H, HPM , t ). Our
discussion can be simplified further by assuming t = id, i.e.
H  Moreover in view of 2.1 we may assume, that G is re-

placed by an appropriate factor group such that Y = Vo is the set of the
relevant atoms. Then in V we define the action s : G ~ S( Vo ) as
above; s(h, g)(x, 0) = h(gx, 0) for x e X.

LEMMA. The action s is a homomorphism whose kernel K = ker (s)
is closed.

PROOF. Since in S(Vo) the action d(g )( h ) for g E G and
h E H, where 0) = (gx, 0) is the restriction of d(g) to Vo, it easily
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follows, that s is a homomorphism; e.g.:

for hi E H, gi E G and a E Vo . That K is closed follows from the assump-
tions in section 1, that Gen c G and H~ c HPM. We let (ha, g« ) E K be a
net (no AC is needed in this argument) such that lim (ha, g« ) _ ( h, g).

Since in view of Lemma 2.3 the mapping (h, g ) --~ d(g)(h) = is

continuous, it follows from Hm c Hv that in the discrete topology on Vo
for a E Vo; since 
From the definition of the product

topology it follows, that lim g« = g in G, whence Gfin c G implies
for a E Vo. Hence 

= g -1 (a) and U. h(a) = a, whence also A g(a) = a (since § . h . g = and
(h, g) E K. e.o.p.

2.5. From Lemma 2.4 it follows, that (H G )/K is a T2 topologi-
cal group. Its topology is group generated, since the sets H1 x G1,
where Hl E HPM and GI E G such that GI c stab Hl are subgroups, form
a neighbourhoodbase of the identity in H G consisting of open sub-
groups (c.f. the proof of Lemma 2.3). We let ~: (H ~QT G)/K -~ S(Vo ),
(7((~,~)’~)=s(~,~)=A’~ be the induced injective homomorphism
and define the Fraenkel-Mostowski model c V( Vo ) from the topo-
logical group (H with the action a. Concerning the model QM
we keep the assumptions from 2.4. Thus the following lemma proves
the theorem.

LEMMA. QM and QM’ are e -isomorphic.

PROOF. As in Lemma 2.1 the isomorphism is defined via the
Mostowski collapsing lemma: QM is isomorphic with and

QM’ with QM2 g V(X), whereby Vo C QMi by the definition of the col-
lapsing mapping for rank zero objects as F( ( x, 0 ), 0) = ( x, 0 ), x e Z. We
shall prove by induction on the rank, that QMi = QM2 and assume, that

n Qm2 for some x E V(X). For a topological group T =
= G, H, F = H ~7: G or E = (H the stabilizer corresponding to
the action d, t, s or a will be denoted by stabt. Then by the definition of
QM, x E QMb fff x E PM and stabh (x) E HPM. Since H and t are in
PM, stabh ( x ) E PM for x E PM, whence x E QMI, iff x E PM and

stabh (x) E HY iff (stabh (x)) x (stabc (x)) is open in the product topol-
ogy on H x G. Then stabF ( x ) E stabh ( x ) x stabg ( x ) is open. If con-
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versely stabF ( x ) is open, then so are stabh ( x ) and stabg ( x ), since F
carries the product topology and stabF (x) fl (H x {1~ }) =
= (stabh ( x )) and similarily for stabg ( x ), where 1 G is the unit ele-
ment. Now it follows as in Lemma 2.1 from the definition of the quo-
tient topology, that iff stabF (x) = U stabE (x) is open, iff

stabE (X) is open, iff X e.o.p.

If QM c PM(Y) is generated from H and the action t in PM, and if
PM is generated from G with the action d, then our lemmas combine to
yield the following reconstruction of QM in V. We start with GI =

which generates PM, too, and set G2 =
= G, ( Y). Then d induces an action e of G2 on PM( Y) (restriction
of d). This action induces a homomorphism ~: G2 --~ Aut H from which
we define H X, G2. This group acts on QM via the product action
s(h, g)(x) = t(h)(a(g)(x) whose kernel K we factor out to obtain a gen-
erating topological group G2 )/K for QM.

3. Modal interpretations.

Modal formulas are built up from propositional variables vi , i E m,
the constant F for false, the connective - for implication and the
modal operator 0 of possibility. An interpretation (~ )* of the modal lan-
guage is a function, that assigns to each modal formula ~ a ZF sentence
o*. The interpretation of the variable vi is arbitrary but fixed. It is pro-
longated inductively through the clauses F* =«0 # 0», (O-Y)*=
=~* and the key clause =«3G, ., G, X, d: a 
where a and g are ZF-formulas such that «(G, ., G, X, d) expresses «G
is a group generated T2 topological group and d : G 2013~ S(X) is an injec-
tive homomorphism», ., G, X, d, x) is the ZF sentence from sec-
tion 1, that x E PM c V(X), and is the relativization of ~ * to
PM (i.e. 3r : fi in ~ * is replaced by ~x : A Thus (0 if; ) * says,
that ~ * is Fraenkel-Mostowski consistent. (We note, that in view of
[13], pp. 287-289, the notion of satisfaction is absolute: PM P
1= Rel(QM, for some permutation model QM which is constructed
within PM, iff QM’ 1= ~, QM’ the model of Theorem 2.) A modal formu-
la ~ is FMs-valid, if for the system S of set theory (extending ZFA) ~ * is
provable for all interpretations ( ~ ) *. The set of all FMs-valid formulas is
a propositional modal logic, provided that S is consistent. For it in-
cludes the tautologies of classical propositional logic, it is closed under
the rules of detachment under material implication and uniform substi-
tution of modal formulas for propositional variables and in view of
S D ZFA and the definition of validity it contains the axioms K and *
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(I~ : D( § - §) - (D§ - 11~), * : - In order to construct a system
which is compatible with the rule of necessitation we set S = FM, the
set of all sentences which are true in all Fraenkel-Mostowski models
over a fixed ZFC universe V.

THEOREM. If ZF is consistent, then a modal formula O is FMFM-
valid, iff O is in S 5.

The major step in the proof is the soundness of S 5. As in the case of
the Bernays-Rieger models the completeness then follows from the
pretabularity of S 5.

3.1 LEMMA. If ZF is consistent, then the FMFM-valid formulas
form a normal extension of S 5.

PROOF. Theorem 2 implies the rule of necessitation. For if ~ * is
true in all Fraenkel-Mostowski models but PM does not satisfy (0~)*,
then for some model QM which is constructed within PM ~ * is false,
but QM is isomorphic to a Fraenkel-Mostowski model, whence this is
impossible. A similar argument proves the soundness of axiom 4:

D~ 2013&#x3E; D D§, since the proof of Theorem 2 does not depend on AC. Since
PM(Vo ) is a Fraenkel-Mostowski model in PM which is isomorphic to
PM, the axiom T is sound: D~2013~. As any model QM may
be interpreted in the axiom E is sound, too: 0
0 o~. e.o.p.

We note, that FMFM does not contain the axiom Tr : ~ H D~. For
otherwise the ZFA + AC model V(0) would satisfy (O)* for the formu-
la O =«vo» and the interpretation (vo)* = «AC». This contradicts the
fact, that if ZF is consistent, then AC fails in all Fraenkel-Mostowski
submodels of V(0) whose generating groups are not discrete.

3.2 LEMMA. If ZF is consistent, then all FMFM-valid modal for-
mulas are in S 5.

PROOF. According to Scroggs [11] a proper normal extension of S5
satisfies one of Dugundji’s axioms Dn : V for some n ~ 1. If

"

ZF is consistent, then Dn cannot even be FMzFc-valid, as follows from
Easton [6] when applied to the interpretation = ki + 1». For
FMFM-validity Mostowski’s results on finite choice axioms suffice (Jech
[9], Theorem 7.15). e.o.p. 

-
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The above interpretation v * _ «AC for families of all n-element sets,
0  n :s:; pi- where pi is the i th prime does not suffice to improve Theo-
rem 3 by defining validity with respect to this fixed interpretation
only. Any such system FMFM would either contain the inconsistency Di
or the substitution rule would fail ( ~ ( ~ is valid for some 0 ~
~ i :s:; 1 - F - F) is invalid, if ZF is consistent). This is in contrast
with the uniform version of the completeness theorem due to Artemov
and Montagna (et alii) for the G6del-L6b system G.

3.3 CONCLUSION. Motivated by Luce [10], Baaz, Brunner, Svozil
[1] propose the thesis, that the notion of empirically meaningful con-
cepts may be represented by means of Fraenkel-Mostowski models.
The modal interpretation of this section therefore describes the logic of
concepts. The fact, that it is S 5, enhances the proposed philosophical
thesis, since it means, that the restrictions on the perception and the
language of observers as given by the models do not affect the capacity
to reason about the perception of others. This is what is expected for
observers with the same mathematical background S = FM of knowl-
edge which is independent of the empirical base.

Reasoning about the perception of Laplacean demons is described
by the accessibility relation PMIIQM, iff QM=PM(X) for some
X E PM. It corresponds to the frame G of all group-generated T2-topo-
logical groups and the relation GIIH, iff H is a factor group of G (c.f. 2.1
and 2.2). This motivates the following modal interpretation: Variables
are interpreted by Boolean combinations of Jech-Sochor bounded sen-
tences v * = a. Connectives are interpreted as before and G ~
p ( 0 ~) *, iff some quotient H ~ ~ *. Here (G, G ) ~ « means, that the
permutation models PM which are generated by (G, G) = ( G, Gnat ) sat-
isfy « (c.f. 1.2). The investigation of the system X of all modal formulas
~ such that G ~ ~ * for all groups G and all interpretations seems to es-
tablish a link between topological group theory and modal logic.
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