The best constant in weighted Poincaré and Friedrichs inequalities
Rendiconti del Seminario Matematico della Università di Padova, Tome 92 (1994), pp. 195-208.
@article{RSMUP_1994__92__195_0,
     author = {Leonardi, Salvatore},
     title = {The best constant in weighted {Poincar\'e} and {Friedrichs} inequalities},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {195--208},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {92},
     year = {1994},
     mrnumber = {1320487},
     zbl = {0822.46034},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_1994__92__195_0/}
}
TY  - JOUR
AU  - Leonardi, Salvatore
TI  - The best constant in weighted Poincaré and Friedrichs inequalities
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1994
SP  - 195
EP  - 208
VL  - 92
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_1994__92__195_0/
LA  - en
ID  - RSMUP_1994__92__195_0
ER  - 
%0 Journal Article
%A Leonardi, Salvatore
%T The best constant in weighted Poincaré and Friedrichs inequalities
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1994
%P 195-208
%V 92
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_1994__92__195_0/
%G en
%F RSMUP_1994__92__195_0
Leonardi, Salvatore. The best constant in weighted Poincaré and Friedrichs inequalities. Rendiconti del Seminario Matematico della Università di Padova, Tome 92 (1994), pp. 195-208. http://www.numdam.org/item/RSMUP_1994__92__195_0/

[1] R.A. Adams, Sobolev Spaces, Academic Press, Inc., London (1975). | MR | Zbl

[2] P. Drabek - F. Nicolosi, Solvability of degenerated elliptic problems of higher order via Leray-Lions theorem, Hiroshima Math. J., to appear. | MR | Zbl

[3] D.E. Edmunds - W.D. Evans, Spectral theory and embeddings of Sobolev spaces, J. London Math. Soc., (2), 41 (1990), pp. 511-525.

[4] D.E. Edmunds - B. Opic, Weighted Poincaré and Friedrichs inequality, J. London Math. Soc., to appear. | Zbl

[5] W.D. Evans - D.J. Harris, Sobolev embeddings for generalized ridged domains, Proc. London Math. Soc., (3), 54 (1987), pp. 141-175. | MR | Zbl

[6] F. Guglielmino - F. Nicolosi, Teoremi di esistenza per i problemi al contorno relativi alle equazioni ellittiche quasilineari, Ric. Mat., 37(1988), Fasc. I, pp. 157-176. | Zbl

[7] R. Hurri, Poincaré domains in RN, Ann. Acad. Sc. Fenn. Ser. A, I Math. Dissertationes, no., 71 (1988). | MR | Zbl

[8] A. Kufner, Weighted Sobolev Spaces, Wiley, Chichester (1985). | MR | Zbl

[9] S. Leonardi, Sovability of degenerated quasilinear elliptic equations, Nonlinear Analysis, to appear. | MR | Zbl

[10] C. Miranda, Istituzioni di Analisi Funzionale Lineare, voll. I e II, U.M.I., Gubbio (1978/1979).

[11] B. Opic, Necessary and sufficient conditions for embeddings in weighted Sobolev spaces, Casopis Pest. Mat., 114 (1989), no. 4, pp. 165-175. | MR | Zbl

[12] B. Opic - A. Kufner, Hardy-type inequalities, Pitman Research Notes in Mathematics, no. 219, Longman Scientific and Technical, Harlow (1990). | MR | Zbl