@article{RSMUP_1993__90__103_0, author = {Secchi, Paolo}, title = {On the equations of ideal incompressible magneto-hydrodynamics}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {103--119}, publisher = {Seminario Matematico of the University of Padua}, volume = {90}, year = {1993}, mrnumber = {1257135}, zbl = {0808.35110}, language = {en}, url = {http://www.numdam.org/item/RSMUP_1993__90__103_0/} }
TY - JOUR AU - Secchi, Paolo TI - On the equations of ideal incompressible magneto-hydrodynamics JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1993 SP - 103 EP - 119 VL - 90 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_1993__90__103_0/ LA - en ID - RSMUP_1993__90__103_0 ER -
%0 Journal Article %A Secchi, Paolo %T On the equations of ideal incompressible magneto-hydrodynamics %J Rendiconti del Seminario Matematico della Università di Padova %D 1993 %P 103-119 %V 90 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_1993__90__103_0/ %G en %F RSMUP_1993__90__103_0
Secchi, Paolo. On the equations of ideal incompressible magneto-hydrodynamics. Rendiconti del Seminario Matematico della Università di Padova, Tome 90 (1993), pp. 103-119. http://www.numdam.org/item/RSMUP_1993__90__103_0/
[1] Solvability of a homogeneous initial-boundary value problem for equations of magnetohydrodynamics of an ideal fluid (Russian), Dinam. Sploshn. Sredy, 57 (1982), pp. 3-20. | MR | Zbl
,[2] Boundary-value problems for a class of first order partial differential equations in Sobolev spaces and applications to the Euler flow, Rend. Sem. Mat. Univ. Padova, 79 (1988), pp. 247-273. | Numdam | MR | Zbl
,[3] Kato's perturbation theory and well-posedness for the Euler equations in bounded domains, Arch. Rat. Mech. Anal., 104 (1988), pp. 367-382. | MR | Zbl
,[4] Existence results in Sobolev spaces for a stationary transport equations, Ric. Mat. Suppl., 36 (1987) pp. 173-184. | MR | Zbl
,[5] A well posedness theorem for non-homogeneous in-viscid fluids via a perturbation theorem, J. Diff. Eq., 78 (1989), pp. 308-319. | MR | Zbl
,[6] On the Euler equations for non-homogeneous fluids, (I) Rend. Sem. Mat. Univ. Padova, 63 (1980), 151-168; (II) J. Math. Anal. Appl., 73 (1980), pp. 338-350. | Numdam | Zbl
- ,[7] Existence of C∞ solutions of the Euler equations for non-homogeneous fluids, Commun. Partial Diff. Eq., 5 (1980), 95-107. | Zbl
- ,[8] Ideal Magnetohydrohynamics, Plenum Press, New York-London (1987).
,[9] An Lr-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo, 24 (1977), pp. 685-700. | MR | Zbl
- ,[10] Linear evolution equations of hyperbolic type, J. Fac. Sci. Univ. Tokyo, 17 (1970), pp. 241-258. | MR | Zbl
,[11] Linear evolution equations of hyperbolic type II, J. Math. Soc. Japan, 25 (1973), pp. 648-666. | MR | Zbl
,[12] The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rat. Mech. Anal., 58 (1975), pp. 181-205. | MR | Zbl
,[13] C. Y. LAI, Nonlinear evolution equations and the Euler flow, J. Funct. Analysis, 56 (1984), pp. 15-28. | MR | Zbl
-[14] Weak and classical solutions of the two-dimensional magnetohydrodynamics equations, Tohoku Math. J., 41 (1989), pp. 471-488. | MR | Zbl
,[15] Well-posedness of the equations of a non-homogeneous perfect fluid, Commun. Partial Diff. Eq., 1 (1976), pp. 215-230. | MR | Zbl
,[16] On a magnetohydrodynamic problem of Euler type, J. Diff. Eq., 74 (1988), pp. 318-335. | MR | Zbl
,[17] On an initial boundary value problem for the equations of ideal magnetohydrodynamics, to appear on Math. Meth. Appl. Sci. | MR | Zbl
,[18] On the Euler equations of incompressible perfect fluids, J. Funct. Anal., 20 (1975), pp. 32-43. | Zbl
,[19] About the motion of non-homogeneous ideal incompressible fluids, Non Linear Anal., 12 (1988), pp. 43-50. | MR | Zbl
- ,[20] A. MATSUMURA, The fixed boundary value problems for the equations of ideal magneto-hydrodynamics with a perfectly conducting wall condition, Commun. Math. Phys., 136 (1991), pp. 119-140. | MR | Zbl
-