On vector bundles whose general sections have all projectively equivalent zero-loci
Rendiconti del Seminario Matematico della Università di Padova, Tome 89 (1993), pp. 29-36.
@article{RSMUP_1993__89__29_0,
     author = {Ballico, E.},
     title = {On vector bundles whose general sections have all projectively equivalent zero-loci},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {29--36},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {89},
     year = {1993},
     mrnumber = {1229040},
     zbl = {0795.14012},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_1993__89__29_0/}
}
TY  - JOUR
AU  - Ballico, E.
TI  - On vector bundles whose general sections have all projectively equivalent zero-loci
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1993
SP  - 29
EP  - 36
VL  - 89
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_1993__89__29_0/
LA  - en
ID  - RSMUP_1993__89__29_0
ER  - 
%0 Journal Article
%A Ballico, E.
%T On vector bundles whose general sections have all projectively equivalent zero-loci
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1993
%P 29-36
%V 89
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_1993__89__29_0/
%G en
%F RSMUP_1993__89__29_0
Ballico, E. On vector bundles whose general sections have all projectively equivalent zero-loci. Rendiconti del Seminario Matematico della Università di Padova, Tome 89 (1993), pp. 29-36. http://www.numdam.org/item/RSMUP_1993__89__29_0/

[1] M.F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. (3), 7 (1957), pp. 414-452. | MR | Zbl

[2] E. Ballico, Vector bundles, reflexive sheaves and algebraic surfaces, Rend. Sem. Mat. Univ. Milano (to appear). | MR | Zbl

[3] E. Ballico, On pairs of plane curves with projectively equivalent linear sections, Comm. in Algebra (to appear). | MR | Zbl

[4] E. Ballico, On projective varieties with projectively equivalent zero-dimensional linear sections, Canad. Math. Bull. (to appear). | MR | Zbl

[5] E. Ballico - A. HEFEZ, On the Galois group associated to a generically étale morphism, Comm. in Algebra, 14 (1986), pp. 899-909. | MR | Zbl

[6] A. Fauntleroy, Quasi-projective orbit spaces for linear algebraic group actions, in: Invariant Theory, Contemporary Math., 88 (1989), pp. 399-407. | MR | Zbl

[7] J. Harris, The Galois group of enumerative problems, Duke Math. J., 46 (1979), pp. 685-724. | MR | Zbl

[8] J. Harris, Curves in projective space, (Chapter III is by D. EISENBUD and J. HARRIS), Les Presses de l'Université de Montréal (1982). | MR | Zbl

[9] S. Kleiman, The transversality of a general translate, Compositio Math., 28 (1974), pp. 287-297. | EuDML | Numdam | MR | Zbl

[10] S. Kleiman, Tangency and duality, in: Proc. 1984 Vancouver Conference in Algebraic Geometry, CMS-AMS Conference Proceedings, vol. 6 (1985), pp. 163-226. | MR | Zbl

[11] D. Laksov, Wronskians and Plucker formulas for linear systems on curves, Ann. Scient. Ec. Norm. Sup. (4), 17 (1984), pp. 45-66. | Numdam | MR | Zbl

[12] J. Rathmann, The uniform position principle for curves in characteristic p, Math. Ann., 276 (1987), pp. 565-579. | MR | Zbl

[13] C.S. Seshadri, Quotient spaces modulo reductive algebraic groups, Ann. Math., 95 (1972), pp. 511-556. | MR | Zbl