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Comparison between the Generalized Mean
Curvature according to Allard

and Federer’s Mean Curvature Measure.

E. OSSANNA(*)

ABSTRACT - We compare two well known generalized notions of mean curvature
for the boundary of a convex body: Federer’s mean curvature measure, de-
fined via Steiner’s formula, and Allard’s generalized mean curvature, which
is a vector measure obtained via the first variation of the area. The compari-
son is got by a suitable approximation lemma for convex sets.

Our purpose is to compare the generalized mean curvature (accord-
ing to Allard) of a convex body K to its mean curvature measure (ac-
cording to Federer). We recall that a body K of R n is a compact subset
of R n such that k # o. Our result, which is stated in Theorem 1, follows
approximating K by a suitable sequence of regular convex bodies,
whose existence is assured by Lemma 2.

After this work was completed we have been informed by Joseph
Fu that he has recently obtained [FU], by different methods, a similar
(unpublished) result in the context of sets with a generalized unit nor-
mal bundle.

First we recall some useful facts.
Let K be a convex body of R n, let p(K, .): be the nearest-

point map for K and define

If one considers the set Ag(K, E) _ ~x E Kg x) E E~, where E is
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any Borel subset of R n and K~ _ Ix x)  El, then [SCH1]
there are the so called Federer’s curvature measures of K, denoted by
~m (K, .), m = 0, ..., n and defined on the Borel sets of R n in such a way
that

where «(k) 11). In particular we call ~n _ 2 (K, .)
the mean curvature measure.

One can also consider the set I
(p(K, x), u(K, x)) where A is any Borel subset of R n x sn-l.
In this case one finds that [SCH2] there are n measures, .),
m = 0, ... , n - 1, defined on the Borel sets of R n x Sn- 1 and called the
generalized curvature measures of K, such that

Moreover let H be the generalized mean curvature of K according
to Allard, defined so that

for each vector field X E C 6 (U), where U is an open subset of R n.
We shall give also the definition of stratification of a measure de-

fined on the product of two sets.

LEMMA 1 [SIM]. Let a be a Radon measure on R n x sn-l and
consider the Radon measure a on R n such that a(A) = a(A x for
each Borel set A c R n. Then for almost all x E R n there is a Radon
measure Àx on S n -1 such that for each Borel set B CSn-1 the function
Àx (B) is the density of the measure PB with respect of ~, where PB (A) =
= a(A x B). From this decomposition of the measure a one gets

for each function g(x, y) E C3(Rn x 

We call (~, Àx) the stratification of the measure a.

THEOREM 1. Let K be a convex body of R n let H be the generalized
mean curvature of K and ~n - 2 (K, .) the mean curvature measure of K.
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Then for each Borel set E c R n we have

where (~n _ 2 (K ), Àx) is the stratification of the generalized curvature
measure On _ 2 (K) and b~,x is the barycenter of the measure Àx.

For the proof of the theorem we need the approximation lemma be-
low. First we recall that [HUT] the oriented varifold associated to an
oriented hypersurface M of R n is the Radon measure 
such that for each x one has

where v is the unit normal field to the surface M.

LEMMA 2. Let K be a convex body ofRn, then there is a sequence of
convex bodies such that aKj = Mj is a smooth surface and such
that the following properties hold:

i) Kj -dH K, where dH stays for Hausdorff distance;
ii) the oriented varifolds lij associated to the surfaces Mj converge

weakly to the varifold ~c associated to the surface 3K = M.

PROOF. Let K be a convex body of R n and M its boundary, suppose
that Br (0) c K and K c BR (0), for suitable r &#x3E; 0 and R &#x3E; 0. Consider the
function u: R n -~ R defined in the following way:

where ol n M. Note that the function iM is well de-
fined and iM(x);é 0 for every 

In this case M consists of the points x E R n such that u(x) = 1.
Clearly the function u is convex and lipschitz continuous, moreover

the gradient exists for almost all x, and where Vu is defined we
have 1IR - 1/r.

Now be a sequence of mollifiers and define the functions

uj = u * Y)j. This way we get a sequence of smooth convex functions such
that:
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(a) converges uniformly to the function u;

(b) for every x we have 1IR - 1/r.
Now consider the sets Ki = 11 j E N. One can see

easily that the sets Kj are convex and uniformly bounded, hence they
are convex bodies.

The statement i) of the lemma follows from (a) after some calcula-
tions. Moreover observe that, being Kj convex bodies, convergence i)
implies

From (b) we get that each set Mj = Ix (x) = 1 ~, boundary of
the convex body is a smooth hypersurface of R n.

In what follows we denote by v the unit outward normal to M (v is
defined almost everywhere) and by vj the unit outward normal to

M;.
Now we shall prove statement ii) of the lemma, that is ~.
As a first step we consider the vector measures

and their total variation measures

and we shall prove that

To obtain ~~ we use the divergence theorem and the convergence
(1), getting for each vector field 

and we extend (4) to vector fields belonging to C8, using the density of
Cj in C 8 and the uniform boundness of the convex bodies K~ .

Next we show that p~ ~ 1 2013" I [31. By convergence (2) we get
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and on the other hand by i) we have

in fact, i) implies that for every E &#x3E; 0 there are r &#x3E; 0 and J E N such

that, if we set e = 1 + s/r, it c lg c ~ for all j &#x3E; J, from
which, again for j &#x3E; J, follows.

Thus, being l;3j I and finite measures, (3) follows from (5) and
(6) [HAL].

The second step consists in proving that, if there is a subsequence
of the sequence of Radon and a Radon mea-

sure « such that

then a = fl. For this we consider the stratification (~ Xz ) of the measure
« and a then we have

and from (3) and (7) we get

which implies

Moreover since !3j ~ 
a, between the two measures !3 and a

there is the relationship where b(x) = J f Y dÀx. But
s~-1

~ = ~3 ~ , hence v(x) I = b(x) 1!31, which implies
f y dXz = v(x) for 1!3I-almost all that is

sn-1

1f3I-almost everywhere. Now, using (8) and (9), we can prove a = 11, in
fact for each x we have
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Now we end the proof of statement ii) of the lemma. Assume by
contradiction there is a function such that

f g(x, y) dp.j does not converge to f g(x, y) dp.. Then there
Rn x sn-l

are a number e and a subsequence such that

On the other hand one has (R n x S n -1 ) ~ C Vk. Hence there is a fur-
ther subsequence that converges weakly to some measure,
which, by the second step, must be and this contradicts
(10).

PROOF OF THEOREM 2. Let be the sequence introduced in
the Lemma 2. From the weak convergence of the varifolds uj we
have

for each vector field X E Co (R n ).
Hence, for the definition of generalized mean curvature, we have

also

where Hj is the mean curvature vector of the surfaces dKj.
Now if we let E be a Borel set of R n such that H(aE) = 0 and

~n - 2 (K, aE) = 0, we have [SCH2]

which implies in particular
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But aKj is a regular surface, thus we have

moreover, being H(8E) = 0, convergence (11) implies

Hence, for each Borel set E c R n such that H(3E) = 0 and

¢n _ 2 (K, 3E) = 0, we get

and this equality holds also for every Borel set 
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