@article{RSMUP_1992__87__19_0, author = {Kalamidas, N. D.}, title = {Chain conditions and continuous mappings on $C_p(X)$}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {19--27}, publisher = {Seminario Matematico of the University of Padua}, volume = {87}, year = {1992}, mrnumber = {1183899}, zbl = {0767.54003}, language = {en}, url = {http://www.numdam.org/item/RSMUP_1992__87__19_0/} }
TY - JOUR AU - Kalamidas, N. D. TI - Chain conditions and continuous mappings on $C_p(X)$ JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1992 SP - 19 EP - 27 VL - 87 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_1992__87__19_0/ LA - en ID - RSMUP_1992__87__19_0 ER -
%0 Journal Article %A Kalamidas, N. D. %T Chain conditions and continuous mappings on $C_p(X)$ %J Rendiconti del Seminario Matematico della Università di Padova %D 1992 %P 19-27 %V 87 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_1992__87__19_0/ %G en %F RSMUP_1992__87__19_0
Kalamidas, N. D. Chain conditions and continuous mappings on $C_p(X)$. Rendiconti del Seminario Matematico della Università di Padova, Tome 87 (1992), pp. 19-27. http://www.numdam.org/item/RSMUP_1992__87__19_0/
[1] Function spaces in the topology of pointwise convergence and compact sets, Uspekhi Mat. Nank., 39:5 (1984), pp. 11-50. | Zbl
,[2] On linear homeomorphisms of function spaces, Soviet Math. Dokl., 25, No. 3 (1982). | Zbl
,[3] Calibers and point-finite cellularity of the space Cp(X) and questions of S. Gulko and M. Husek, Topology and its Applications, 23 (1986), pp. 65-73, North-Holland. | MR | Zbl
- ,[4] Chain Conditions in Topology, Cambridge Tracts in Mathematics, Vol. 79, Cambridge University Press, Cambridge (1982). | MR | Zbl
- ,[5] Mappings and embeddings of dyadic spaces, Mat. Sb., 103 (1977), pp. 52-68. | MR | Zbl
,[6] On injective Banach spaces and the spaces L∞ (μ) for finite measures μ, Acta Mathematica, 124 (1970), pp. 205-248. | Zbl
,[7] The spaces Cp(X): Decomposition into a countable union of bounded subspaces and completeness properties, Topology and its Applications, 22 (1986), pp. 241-253. | MR | Zbl
,[8] The smallest subring of the ring Cp(C p(X)) containing χU is everywhere dense in Cp(C p(X)), Vestnik Moskovskogo Universiteta Matematica, 42, No. 1 (1987), pp. 20-23. | Zbl
,[9] On pointwise convergence, compactness and equicontinuity, Adv. Math., 12 (1974), pp. 171-177. | MR | Zbl
,