Abstract nonlinear Timoshenko beam equation
Rendiconti del Seminario Matematico della Università di Padova, Tome 86 (1991), pp. 193-205.
@article{RSMUP_1991__86__193_0,
     author = {Panizzi, Stefano},
     title = {Abstract nonlinear {Timoshenko} beam equation},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {193--205},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {86},
     year = {1991},
     mrnumber = {1154108},
     zbl = {0763.35096},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_1991__86__193_0/}
}
TY  - JOUR
AU  - Panizzi, Stefano
TI  - Abstract nonlinear Timoshenko beam equation
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1991
SP  - 193
EP  - 205
VL  - 86
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_1991__86__193_0/
LA  - en
ID  - RSMUP_1991__86__193_0
ER  - 
%0 Journal Article
%A Panizzi, Stefano
%T Abstract nonlinear Timoshenko beam equation
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1991
%P 193-205
%V 86
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_1991__86__193_0/
%G en
%F RSMUP_1991__86__193_0
Panizzi, Stefano. Abstract nonlinear Timoshenko beam equation. Rendiconti del Seminario Matematico della Università di Padova, Tome 86 (1991), pp. 193-205. http://www.numdam.org/item/RSMUP_1991__86__193_0/

[AE] R. Aprahamian - D.A. Evensen, J. Appl. Mech.-Trans. ASME (June 1970), pp. 287-291.

[A] A. Arosio, Global weak solutions for abstract nonlinear evolution equations of hyperbolic type, Quad. Dip. Mat. Univ. Parma, 50 (1990).

[APP] A. Arosio - S. Panizzi - M.G. Paoli, Inhomogeneous Timoshenko beam equations, short communication at the 5° Symposium on «Control of distributed parameters systems» (Perpignan, June '89); Temporally inhomogeneous Timoshenko beam equations, Ann. Mat. Pura Appl. (to appear). | Zbl

[B] J. Bartak, Stability and correctness of abstract differential equations in Hilbert spaces, Czechoslovak Math. J., 28 (103), No. 4 (1978), pp. 548-593. | EuDML | MR | Zbl

[CHU] Cremer - Heekl - Ungar, Structure borne sound, Springer, Berlin.

[D] Y. Deng, Exponential uniform stabilization of cantilevered Timoshenko beam with a tip body via boundary feedback control, 5° Symposium on Control of distributed parameter systems, Perpignan (1989).

[F] A. Flammia, Il problema di Cauchy per l'equazione □u = f(u) da un punto di vista astratto, Teorema 1.1, Tesi di laurea, Univ. Pisa, a. a. 1983/84.

[Fl] W. Flügge, Die Ausbreitung von biegenvellen in Stäben, Z. Angew. Math. Mech., 22 (1942), pp. 312-318. | JFM

[IK] K. Ito - N. Kunimatsu, Boundary control of the Timoshenko beam with viscous internal dampings, 5° Symposium on Control of distributed parameter systems, Perpignan (1989).

[KR] J.U. Kim - Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control Optim., 25, No. 6 (1987), pp. 1417-1429. | MR | Zbl

[Ko] V. Komornik, Controlabilité exacte en temps minimal de quelques modèles de placques, C.R. Acad. Paris, Sér. I Math., 307 (1988), pp. 471-474. | MR | Zbl

[Kr] M. Kranys, Casual theory of evolution and wave propagation in mathematical physics, ASME J. Appl. Mech., 42, No. 11 (1989), pp. 305-321. | MR

[LL] J. Lagnese - J.L. Lions, Modelling, analysis and control of thin plates, Masson, Paris (1988). | MR | Zbl

[L] J.L. Lions, Quelques méthodes de rèsolution des problèmes aux limites on linéaires, ch. 1, Th. 1.1, Dunod & Gauthier Villars, Paris (1969). | MR

[M] R.D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, J. Appl. Mech., 18 (1951), pp. 31-38. | Zbl

[N] J. Neustupa, A contribution to the theory of stability of differential equations in Banach space, Cwechoslovak Math. J., 29 (104), No. 1 (1979), pp. 27-52. | MR | Zbl

[Pa] M.G. Paoli, Il problema di Cauchy per l'equazione (□a □b + a□c)u = 0 da un punto di vista astratto, Tesi di Laurea, Univ. Pisa, a.a. 1987/88.

[Ru] D.L. Russell, Mathematical models for the elastic beam and their control-theoretic implications, Semigroups, theory and applications, Vol. II, H. Brezis, M. G. Crandall & F. Kappel eds., Longman, Harlow (1986), pp. 177-216. | MR | Zbl

[S] D.H. Sattinger, On global solutions of nonlinear hyperbolic equations, Arch. Rat. Mech. Anal., 30 (1968), pp. 148-172. | MR | Zbl

[Sc] J. Schmidt, Entwurf von reglern zur aktiven schwingungdampfung an flexciblen mechanischen strukturen, Dissertation von Diplom-Ingenieur, Darmstadt (1987).

[T] S. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philosophical Magazine, 41 (1921), pp. 744-746; Vibration problems in engineering, 3a ed., Van No-strand, Princeton (1955).

[TC] T.C. Traill-Nash - A.R. Collar, The effects of shear flexibility and rotatory inertia on the binding vibrations of beams, Quart. J. Mech. Appl. Math., 6 (1953), pp. 186-222. | MR | Zbl

[U] Ya S. Uflyand, The propagation of waves in the transverse vibrations of bar and plates (in russo), Akad. Nauk SSSR Prikl. Mat. i Meh., 12 (1948), pp. 287-300. | MR

[W] K. Washizu, Variational methods in elasticity and plasticity, Pergamon, London (1968). | MR | Zbl