Carriers of torsion-free groups
Rendiconti del Seminario Matematico della Università di Padova, Tome 84 (1990), pp. 263-281.
@article{RSMUP_1990__84__263_0,
     author = {Pierce, R. S. and Vinsonhaler, C. I.},
     title = {Carriers of torsion-free groups},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {263--281},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {84},
     year = {1990},
     mrnumber = {1101299},
     zbl = {0733.20033},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_1990__84__263_0/}
}
TY  - JOUR
AU  - Pierce, R. S.
AU  - Vinsonhaler, C. I.
TI  - Carriers of torsion-free groups
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1990
SP  - 263
EP  - 281
VL  - 84
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_1990__84__263_0/
LA  - en
ID  - RSMUP_1990__84__263_0
ER  - 
%0 Journal Article
%A Pierce, R. S.
%A Vinsonhaler, C. I.
%T Carriers of torsion-free groups
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1990
%P 263-281
%V 84
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_1990__84__263_0/
%G en
%F RSMUP_1990__84__263_0
Pierce, R. S.; Vinsonhaler, C. I. Carriers of torsion-free groups. Rendiconti del Seminario Matematico della Università di Padova, Tome 84 (1990), pp. 263-281. http://www.numdam.org/item/RSMUP_1990__84__263_0/

[A] D.M. Arnold, Finite rank torsion free abelian groups and rings, Lecture Notes in Mathematics, 931, Springer-verlag, Berlin, Heidelberg, New York, 1982. | MR | Zbl

[A-M] M.F. Atiyah - I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, 1969. | MR | Zbl

[A-P-R-V-W] D.M. Arnold - R.S. Pierce - J.D. Reid - C.I. Vinsonhaler- W.J. Wickless, Torsion free abelian groups of finite rank projective as modules over their endomorphism rings, Jour. Alg., 71 (1981), pp. 1-10. | MR | Zbl

[B1] M.C.R. Butler, On locally free torsion-free rings of finite rank, J. Lond. Math. Soc., 43 (1968), pp. 297-300. | MR | Zbl

[B2] M.C.R. Butler, A Galois-theoretic description of certain quasi-endomorphism rings, Symposia Mathematica, 13 (1974), pp. 143-151. | MR | Zbl

[B-S] R.A. Bowshell - P. Schultz, Unital rings whose additive endomorphisms commute, Math. Ann., 228 (1977), pp. 197-214. | MR | Zbl

[C] A.L.S. Corner, Every countable reduced torsion-free ring is an endomorphism ring, Proc. Lond. Math. Soc., (3), 13 (1963), pp. 687-710. | MR | Zbl

[D-V-M] M. Dugas - A. Mader - C.I. Vinsonhaler, Large E-rings exist, J. Algebra, 108 (1987), pp. 88-101. | MR | Zbl

[J] N. Jacobson, Lectures in Abstract Algebra, vol. III, Von Nostrand, Princeton, 1964.

[K] G. Kolettisjr., Homogeneously decomposable modutes, Studies on Abelian Groups, Paris (1968), pp. 223-238. | MR | Zbl

[M-V] A. Mader - C.I. Vinsonhaler, Torsion-free E-modules, J. Alg., 115 (1988), pp. 401-411. | MR | Zbl

[N] J. Neukirch, Class Field Theory, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1980. | MR | Zbl

[P1] R.S. Pierce, Subrings of simple algebras, Mich. Math. J., 7 (1960), pp. 241-243. | MR | Zbl

[P2] R.S. Pierce, Permutation representations with trivial set stabilizers, J. Alg., 95 (1985), pp. 88-95. | MR | Zbl

[P-V1] R.S. Pierce - C.I. Vinsonhaler, Realizing central division algebras, Pac. J. Math., 109 (1983), pp. 165-177; correction, 130 (1987), pp. 397-399. | MR | Zbl

[P-V2] R.S. Pierce - C.I. Vinsonhalfr, Realizing algebraic number fields, Lecture Notes in Mathematics, 1006, Springer-Verlag, New York (1982/83), pp. 49-96. | MR | Zbl

[P-V3] R.S. Pierce- C.I. Vinsonhaler, Classifying E-rings (manuscript).

[Re] J.D. Reid, On the ring of quasi-endomorphisms of a torsion-free group Topics in Abelian Groups, Chicago (1963), pp. 51-68. | MR

[Ri] P. Ribenboim, Modules sur un anneau de Dedekind, Summa Brasil Math., 3 (1952), pp. 21-36. | MR | Zbl

[S] P. Schultz, The endomorphism ring of the additive group of a ring, J. Aust. Math. Soc., 15 (1973), pp. 60-69. | MR | Zbl

[W] E. Weiss, Algebraic Number Theory, McGraw-Hill, New York, 1963. | MR | Zbl

[Z] H. Zassenhaus, Orders as endomorphism rings of modules of the same rank, J. Lond. Math. Soc., 42 (1967), pp. 180-182. | MR | Zbl