Solutions of minimal period of a wave equation via a generalization of a Hofer's theorem
Rendiconti del Seminario Matematico della Università di Padova, Tome 81 (1989), pp. 49-63.
@article{RSMUP_1989__81__49_0,
     author = {Salvatore, A.},
     title = {Solutions of minimal period of a wave equation via a generalization of a {Hofer's} theorem},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {49--63},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {81},
     year = {1989},
     mrnumber = {1020185},
     zbl = {0696.35109},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_1989__81__49_0/}
}
TY  - JOUR
AU  - Salvatore, A.
TI  - Solutions of minimal period of a wave equation via a generalization of a Hofer's theorem
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1989
SP  - 49
EP  - 63
VL  - 81
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_1989__81__49_0/
LA  - en
ID  - RSMUP_1989__81__49_0
ER  - 
%0 Journal Article
%A Salvatore, A.
%T Solutions of minimal period of a wave equation via a generalization of a Hofer's theorem
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1989
%P 49-63
%V 81
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_1989__81__49_0/
%G en
%F RSMUP_1989__81__49_0
Salvatore, A. Solutions of minimal period of a wave equation via a generalization of a Hofer's theorem. Rendiconti del Seminario Matematico della Università di Padova, Tome 81 (1989), pp. 49-63. http://www.numdam.org/item/RSMUP_1989__81__49_0/

[1] A. Ambrosetti - G. MANCINI, Solutions of minimal period for a class of convex Hamiltonian systems, Math. Ann., 155 (1981). | MR | Zbl

[2] A. Ambrosetti - P. H. RABINOWITZ, Dual variational methods in a critical point theory and applications, J. Funct. Anal., 14 (1973), pp. 345-381. | MR | Zbl

[3] P. Bartolo - V. BENCI - D. FORTUNATO: Abstract critical point theorems and applications to some nonlinear problems with « strong » resonance at infinity, Nonlinear Anal., T.M.A., 7 (1983), pp. 981-1012. | MR | Zbl

[4] V. Benci, Some applications of the generalized Morse-Conley index, Conferenze del Seminario di Matematica dell'Università di Bari, 217 (1987). | MR | Zbl

[5] V. Benci - D. FORTUNATO, The dual method in critical point theory. Multiplicity results for indefinite functionals, Ann. Mat. Pura Appl., 32 (1981), pp. 215-242. | MR | Zbl

[6] V. Benci - D. FORTUNATO, Subharmonic solutions of prescribed minimal period for non autonomous differential equations, Edited by G. F. DELL'ANTONIO - B. D'ONOFRIO, World Scientific, Singapore (1987), pp. 83-96. | MR | Zbl

[7] H. Brezis, Periodic solutions of nonlinear vibrating strings and duality principles, Bull. Amer. Math. Soc., 3 (1983), pp. 409-426. | MR | Zbl

[8] H. Brezis - J.M. Coron - L. Nirenberg, Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math., 33 (1980), pp. 667-689. | MR | Zbl

[9] J.M. Coron, Periodic solution of a nonlinear wave without assumptions of monotonicity, Math. Ann., 252 (1983), pp. 273-285. | MR | Zbl

[10] D. Gromoll - W. MEYER, On differentiable functions with isolated critical points, Topology, 8 (1969), pp. 361-369. | MR | Zbl

[11] H. Hofer, A note on the topological degree at a critical point of mountain pass-type, Proc. Amer. Math. Soc., 90, 2 (1984), pp. 309-315. | MR | Zbl

[12] H. Hofer, A geometric description of the neighbourhood of a critical point given by the mountain-pass theorem, J. London Math. Soc., 31 (1985), pp. 566-570. | MR | Zbl

[13] H. Lovicarova, Periodic solutions of a weakly nonlinear wave equation in one dimensional, Czech. Math. J., 19 (1969), pp. 324-342. | MR | Zbl

[14] P.H. Rabinowitz, Variational Methods for Nonlinear Eigenvalue Problems, Edited by G. PRODI, Edizione Cremonese, Roma (1974), pp. 141-195. | MR

[15] P. Rockafeller, Convex Analysis, Princeton University Press (1970). | MR | Zbl

[16] A. Salvatore, Solutions of minimal period for a semilinear wave equation, to appear on Ann. Mat. Pura e Appl. | MR | Zbl

[17] G. Tarantello, Solutions with prescribed minimal period for nonlinear vibrating strings, Comm. P.D.E., 12, 9 (1987), pp. 1071-1094. | MR | Zbl