@article{RSMUP_1989__81__49_0, author = {Salvatore, A.}, title = {Solutions of minimal period of a wave equation via a generalization of a {Hofer's} theorem}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {49--63}, publisher = {Seminario Matematico of the University of Padua}, volume = {81}, year = {1989}, mrnumber = {1020185}, zbl = {0696.35109}, language = {en}, url = {http://www.numdam.org/item/RSMUP_1989__81__49_0/} }
TY - JOUR AU - Salvatore, A. TI - Solutions of minimal period of a wave equation via a generalization of a Hofer's theorem JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1989 SP - 49 EP - 63 VL - 81 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_1989__81__49_0/ LA - en ID - RSMUP_1989__81__49_0 ER -
%0 Journal Article %A Salvatore, A. %T Solutions of minimal period of a wave equation via a generalization of a Hofer's theorem %J Rendiconti del Seminario Matematico della Università di Padova %D 1989 %P 49-63 %V 81 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_1989__81__49_0/ %G en %F RSMUP_1989__81__49_0
Salvatore, A. Solutions of minimal period of a wave equation via a generalization of a Hofer's theorem. Rendiconti del Seminario Matematico della Università di Padova, Tome 81 (1989), pp. 49-63. http://www.numdam.org/item/RSMUP_1989__81__49_0/
[1] G. MANCINI, Solutions of minimal period for a class of convex Hamiltonian systems, Math. Ann., 155 (1981). | MR | Zbl
-[2] H. RABINOWITZ, Dual variational methods in a critical point theory and applications, J. Funct. Anal., 14 (1973), pp. 345-381. | MR | Zbl
- P.[3] V. BENCI - D. FORTUNATO: Abstract critical point theorems and applications to some nonlinear problems with « strong » resonance at infinity, Nonlinear Anal., T.M.A., 7 (1983), pp. 981-1012. | MR | Zbl
-[4] Some applications of the generalized Morse-Conley index, Conferenze del Seminario di Matematica dell'Università di Bari, 217 (1987). | MR | Zbl
,[5] D. FORTUNATO, The dual method in critical point theory. Multiplicity results for indefinite functionals, Ann. Mat. Pura Appl., 32 (1981), pp. 215-242. | MR | Zbl
-[6] D. FORTUNATO, Subharmonic solutions of prescribed minimal period for non autonomous differential equations, Edited by G. F. DELL'ANTONIO - B. D'ONOFRIO, World Scientific, Singapore (1987), pp. 83-96. | MR | Zbl
-[7] Periodic solutions of nonlinear vibrating strings and duality principles, Bull. Amer. Math. Soc., 3 (1983), pp. 409-426. | MR | Zbl
,[8] Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math., 33 (1980), pp. 667-689. | MR | Zbl
- - ,[9] Periodic solution of a nonlinear wave without assumptions of monotonicity, Math. Ann., 252 (1983), pp. 273-285. | MR | Zbl
,[10] W. MEYER, On differentiable functions with isolated critical points, Topology, 8 (1969), pp. 361-369. | MR | Zbl
-[11] A note on the topological degree at a critical point of mountain pass-type, Proc. Amer. Math. Soc., 90, 2 (1984), pp. 309-315. | MR | Zbl
,[12] A geometric description of the neighbourhood of a critical point given by the mountain-pass theorem, J. London Math. Soc., 31 (1985), pp. 566-570. | MR | Zbl
,[13] Periodic solutions of a weakly nonlinear wave equation in one dimensional, Czech. Math. J., 19 (1969), pp. 324-342. | MR | Zbl
,[14] Variational Methods for Nonlinear Eigenvalue Problems, Edited by G. PRODI, Edizione Cremonese, Roma (1974), pp. 141-195. | MR
,[15] Convex Analysis, Princeton University Press (1970). | MR | Zbl
,[16] Solutions of minimal period for a semilinear wave equation, to appear on Ann. Mat. Pura e Appl. | MR | Zbl
,[17] Solutions with prescribed minimal period for nonlinear vibrating strings, Comm. P.D.E., 12, 9 (1987), pp. 1071-1094. | MR | Zbl
,