@article{RSMUP_1989__81__269_0, author = {M\"ohres, Walter}, title = {Aufl\"osbare {Gruppen} mit endlichem {Exponenten,} deren {Untergruppen} alle subnormal sind. - {II}}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {269--287}, publisher = {Seminario Matematico of the University of Padua}, volume = {81}, year = {1989}, mrnumber = {1020199}, zbl = {0695.20022}, language = {de}, url = {http://www.numdam.org/item/RSMUP_1989__81__269_0/} }
TY - JOUR AU - Möhres, Walter TI - Auflösbare Gruppen mit endlichem Exponenten, deren Untergruppen alle subnormal sind. - II JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1989 SP - 269 EP - 287 VL - 81 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_1989__81__269_0/ LA - de ID - RSMUP_1989__81__269_0 ER -
%0 Journal Article %A Möhres, Walter %T Auflösbare Gruppen mit endlichem Exponenten, deren Untergruppen alle subnormal sind. - II %J Rendiconti del Seminario Matematico della Università di Padova %D 1989 %P 269-287 %V 81 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_1989__81__269_0/ %G de %F RSMUP_1989__81__269_0
Möhres, Walter. Auflösbare Gruppen mit endlichem Exponenten, deren Untergruppen alle subnormal sind. - II. Rendiconti del Seminario Matematico della Università di Padova, Tome 81 (1989), pp. 269-287. http://www.numdam.org/item/RSMUP_1989__81__269_0/
[1] Non-nilpotent groups with normalizer condition, Proc. Sec. Internat. Conf. Theory of Groups 1973, Lecture Notes in Mathematics, 372, pp. 357-360, Springer-Verlag, Berlin, 1974. | MR | Zbl
- ,[2] Auflösbare Gruppen mit endlichem Exponenten, deren Untergruppen alle subnormat sind - I, Rend. Sem. Mat. Univ. Padova, 81 (1989), pp. 255-268. | Numdam | MR | Zbl
,[3] Groups covered by permutable subsets, J. London Math. Soc., 29 (1954), pp. 236-248. | MR | Zbl
,[4] A Course in the Theory of Groups, Springer-Verlag, New York-Heidelberg -Berlin (1982). | MR | Zbl
,[5] On groups in which every subgroup is subnormal, J. Algebra, 2 (1965), pp. 402-412. | MR | Zbl
,