Prescribing endomorphism algebras. The cotorsion-free case
Rendiconti del Seminario Matematico della Università di Padova, Tome 80 (1988), pp. 215-241.
@article{RSMUP_1988__80__215_0,
     author = {Franzen, Berthold and G\"obel, R\"udiger},
     title = {Prescribing endomorphism algebras. {The} cotorsion-free case},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {215--241},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {80},
     year = {1988},
     mrnumber = {988123},
     zbl = {0673.16021},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_1988__80__215_0/}
}
TY  - JOUR
AU  - Franzen, Berthold
AU  - Göbel, Rüdiger
TI  - Prescribing endomorphism algebras. The cotorsion-free case
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1988
SP  - 215
EP  - 241
VL  - 80
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_1988__80__215_0/
LA  - en
ID  - RSMUP_1988__80__215_0
ER  - 
%0 Journal Article
%A Franzen, Berthold
%A Göbel, Rüdiger
%T Prescribing endomorphism algebras. The cotorsion-free case
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1988
%P 215-241
%V 80
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_1988__80__215_0/
%G en
%F RSMUP_1988__80__215_0
Franzen, Berthold; Göbel, Rüdiger. Prescribing endomorphism algebras. The cotorsion-free case. Rendiconti del Seminario Matematico della Università di Padova, Tome 80 (1988), pp. 215-241. http://www.numdam.org/item/RSMUP_1988__80__215_0/

[1] A.L.S. Corner, Every countable reduced torsion-free ring is an endomorphism ring, Proc. London Math. Soc. (3), 13 (1963), pp. 687-710. | MR | Zbl

[2] A.L.S. Corner, Endomorphism rings of torsion-free abelian groups, Proceedings of the International Conference on the Theory of Groups, Canberra, 1965 (Gordon and Breach, New York, 1967), pp. 59-69. | Zbl

[3] A.L.S. Corner - R. Göbel, Prescribing endomorphism algebras, a unified treatment, Proc. London Math. Soc. (3), 50 (1985), pp. 447-479. | MR | Zbl

[4] M. Dugas - R. GÖBEL, Every cotorsion-free ring is an endomorphism ring, Proc. London Math. Soc. (3), 45 (1982), pp. 319-336. | MR | Zbl

[5] M. Dugas - R. GÖBEL, Every cotorsion-free algebra is an endomorphism algebra, Math. Z., 181 (1982), pp. 451-470. | MR | Zbl

[6] M. Dugas - R. GÖBEL, Torsion-free abelian groups with prescribed finitely topologized endomorphism rings, Proc. Amer. Math. Soc., 90 (1984), pp. 519-527. | MR | Zbl

[7] L. Fuchs, Infinite abelian groups, Vols. I, II (Academic Press, New York, 1970, 1973). | MR | Zbl

[8] R. Göbel - S. Shelah, On semi-rigid classes of torsion-free abelian groups, J. Algebra, 93 (1985), pp. 136-150. | MR | Zbl

[9] R. Göbel - S. Shelah, Modules over arbitrary domains, Math. Z., 188 (1985), pp. 325-337. | MR | Zbl

[10] R. Göbel - S. Shelah, Modules over arbitrary domains II, Fundamenta mathematicae, 126 (1986), pp. 217-243. | MR | Zbl

[11] R. Göbel, On stout and slender groups, J. Algebra, 35 (1975), pp. 39-55. | MR | Zbl

[12] R. Göbel, The existence of rigid systems of maximal size, Proceedings of the international conference on abelian groups held at CISM, Udine, Italy in 1984 (Springer-Verlag, Wien, 1985; ed.: R. Göbel, C. Metelli, A. Orsatti, L. Salce), pp. 189-202. | MR | Zbl

[13] R. Göbel - B. Wald, Wachstumstypen und schlanke Gruppen, Sympos. Math., 23 (1979), pp. 201-239. | MR | Zbl

[14] V. D. MAZUROV - Y. I. MERZLYAKOV - V. A. CHURKIN (editors), The Kourovka Notebook, Unsolved Problems in Group Theory, Amer. Math. Soc. Transl., 121 (1983) (first ed. 1965). | MR | Zbl

[15] I. Kaplansky, Infinite abelian groups (The University of Michigan Press, Ann Arbor, 1971). | MR | Zbl

[16] S. Shelah, Existence of rigid-like families of abelian p-groups, Model theory and algebra, Lecture Notes in Mathematics 498 (Springer, Berlin, 1975), pp. 384-402. | MR | Zbl

[17] S. Shelah, Classification theory (North Holland, Amsterdam, 1978). | MR

[18] S. Shelah, A combinatorial principle and endomorphism rings. - I: On p-groups, Israel J. Math., 49 (1984), pp. 239-257. | MR | Zbl

[19] S. Shelah, A combinatorial theorem and endomorphism rings of p-groups, pp. 37-86, CISM, Udine, Italy in 1984 (Springer-Verlag, Wien, 1985; ed.: R. Göbel, C. Metelli, A. Orsatti, L. Salce). | MR | Zbl