λ-satisfiability, λ-consistency property, the downward Lowenheim Skolem theorem, and the failure of the interpolation theorem for L k,k with k a strong limit cardinal of cofinality λ
Rendiconti del Seminario Matematico della Università di Padova, Tome 80 (1988), pp. 1-16.
@article{RSMUP_1988__80__1_0,
     author = {Ferro, Ruggero},
     title = {$\lambda $-satisfiability, $\lambda $-consistency property, the downward {Lowenheim} {Skolem} theorem, and the failure of the interpolation theorem for $L_{k,k}$ with $k$ a strong limit cardinal of cofinality $\lambda $},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {1--16},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {80},
     year = {1988},
     zbl = {0691.03021},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_1988__80__1_0/}
}
TY  - JOUR
AU  - Ferro, Ruggero
TI  - $\lambda $-satisfiability, $\lambda $-consistency property, the downward Lowenheim Skolem theorem, and the failure of the interpolation theorem for $L_{k,k}$ with $k$ a strong limit cardinal of cofinality $\lambda $
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1988
SP  - 1
EP  - 16
VL  - 80
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_1988__80__1_0/
LA  - en
ID  - RSMUP_1988__80__1_0
ER  - 
%0 Journal Article
%A Ferro, Ruggero
%T $\lambda $-satisfiability, $\lambda $-consistency property, the downward Lowenheim Skolem theorem, and the failure of the interpolation theorem for $L_{k,k}$ with $k$ a strong limit cardinal of cofinality $\lambda $
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1988
%P 1-16
%V 80
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_1988__80__1_0/
%G en
%F RSMUP_1988__80__1_0
Ferro, Ruggero. $\lambda $-satisfiability, $\lambda $-consistency property, the downward Lowenheim Skolem theorem, and the failure of the interpolation theorem for $L_{k,k}$ with $k$ a strong limit cardinal of cofinality $\lambda $. Rendiconti del Seminario Matematico della Università di Padova, Tome 80 (1988), pp. 1-16. http://www.numdam.org/item/RSMUP_1988__80__1_0/

[1] S. Baratella, Opportune scelte di α e β per estendere la nozione di proprietà di consistenza e i teoremi di interpolazione ai linguaggi infinitari Lαβ con opportune nozioni di soddisfacibilità, Dissertation, University of Padova, Italy, 1983.

[2] E. Cunningham, Chain models: applications of consistency properties and back-and-forth techniques in infinitary quantifier languages, in Infinitary Logics: in memoriam Carol Karp, Springer-Verlag, Berlin, 1975. | MR

[3] R. Ferro, Consistency property and model existence theorem for second order negative languages with conjunctions and quantifications over sets of cardinality smaller than a strong limit cardinal of denumerable cofinality, Rend. Sem. Mat. Univ. Padova, 55 (1976), pp. 121-141. | Numdam | MR | Zbl

[4] R. Ferro, Interpolation theorems for L2+k, k, JSL, 43 (1978), pp. 535-549. | MR | Zbl

[5] R. Ferro, Seq-consistency property and interpolation theorems, Rend. Sem. Mat. Univ. Padova, 70 (1983), pp. 133-145. | Numdam | MR | Zbl

[6] C. Karp, Languages with expressions of infinite length, North Holland, Amsterdam, 1964. | MR | Zbl

[7] C. Karp, Infinite quantifier languages and ω-chains of models, Proceedings of the Tarski Symposium, American Mathematical Society, Providence, 1974. | Zbl

[8] J. Malitz, Infinitary analogs of theorems from first order model theory, JSL, 36 (1971), pp. 216-228. | MR | Zbl