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Boundary-Value Problems
for a Class of First Order Partial Differential Equations
in Sobolev Spaces and Applications to the Euler Flow.

H. BEIRAO DA VEIGA (*)

1. Notations.

Let 2 be an open bounded subset of R”, » > 2, that lies (locally)
on one side of its boundary I', a C* manifold. We denote by » the unit
outward normal to I

For n(x) = (h,(x)), where h,, are real functions defined on £,
we define

R 8
1.1) D@2 = > > > |D*h,(x)]?,

la]=1r=1 s=1

<
@

where 1 is a nonegative integer, o = (&, ..., &) is a multi-index, and
le| = oty + .o + ta. We set |k| = |D°h|, |Dh| = |D*h|. If for each
couple of indices r,s one has h,, € X, where X is a function space,
we simply write h e X.

For « = (Uyy .eoy ty)y W = (Wyy ..., Wy), V= (Vy,...,0,), We define

N n
(1.2) wew = > wuw; , |up=wwun, (@Vu=7Y0v,Du.

i=1 i=1

(*) Indirizzo dell’A.: Istituto di Matematiche Applicate « U. Dini», Via
Bonanno 25, 56100 Plsa, Italy.
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‘We will use the abbreviate notations
oh
D,-h:—é;, h=\h(x)dx, (u,w)=|uw.
02

In general, if X and Y are Banach spaces, £(X, Y) denotes the
Banach space of all bounded linear maps from X into Y. We set
£(X) = £(X, X).

We denote by C*, k > 0, the Banach space consisting of functions
defined in £, and which are restrictions to £2 of C*(R") functions.
The canonical norm in the above space is denoted by [ ].. Cf denotes
the subspace of C* consisting of functions vanishing on I". We denote by
IL” the Banach space L?(2), and by | |, its canonical norm (see below).

The real number p € ]1, + oo[, and the domain £ are fixed once
for all. For convenience these symbols will be dropped even from
some standard notations. According to this convention, W* denotes
the Sobolev space W#2(2) and | |, denotes the canonical norm | |,
(see below). However, in sections 3 and 4 some functional spaces are
defined with respect to an open set B=££2, and in section 5 some
functional spaces and operators are defined with respect to a value
g+ p. In these cases, either the symbols B or ¢ will be inserted in
the notation, or a different notation will be used.

We define W*, k> 1, as the closure of C2(Q) in W*, and W—* as
the dual space of W’“-", where ¢ = p/(p — 1). Finally

WE = Wrn W= Wee(Q) N Whr(Q),

where 0 <Il<Fk For convenience, we set W:, = Wt Clearly,
W% = W*, and W* = W*. Note that W%, I > 1, is the subspace of W
consisting of funections vanishing on I" together with their derivatives
of order less than or equal to {— 1.

The above notation will also be used to denote function spaces
whose elements are vector fields or matrices. For instance, both L
and L7 X...xXL? (N times) will be denoted by the same symbol L2,
and the corresponding norms by the same symbol | |,. Finally, for
h = (h,;) € W, k>0, we define

i = ([wora)”, = 3 0w,
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In the sequel, 7' is a fixed positive real number, and I = [— T, T].
‘We use standard notations for functional spaces consisting of functions
defined on I with values in a Banach space. In particular, the canonical
norm in the Banach space L*(I; C*), k > 0, is denoted by [ 1, that
in L>(I; W*) by | |z, and that in LYI; W*) by || ll5%-

In the sequel the symbol ¢ may denote different positive constants.
The symbol ¢(2, n, N, p, k) means that ¢ depends at most on the
variables inside brackets.

2. Results.

Let a = (a;;) be a N XN matrix, N >1, and v = (v4, ..., v,) be
a vector field, both defined on I x{2. Mostly we will assume here that

(2.1) vy=0, V(@Ex)elxI'.
Let us consider the initial-boundary value problem

Dy + (v(t,x)-V)u + at,2x)u =f, in IxXL,
(2.2) U=..=D"1y=0, on IxI',

Ug=0 = Ug in Q 5

where | is a fixed nonegative integer (if I = 0, the equation (2.2),
is dropped), f= (fi,..., f) is a given vector field in I xR, u, is a
given vector field in £ and (v-V)u = (v-Vay, ..., v Vuy).

In particular, we will show that the Cauchy-Dirichlet problem (2.2)
admits a solution u if and only if f verifies the condition f= ... =
= D-1f = 0. Problem (2.2) will be studied in Sobolev spaces W’M’(.Q)
for arbitrary pe]l, 4+ oo[. Moreover, in case that ! = 0, the pa-
rameter k is also allowed to be negative.

Our approach to the evolution problem looks interesting by itself:
Following the author’s paper [8], we will prove that the operator
#A(t), defined by equation (2.3), is the generator of a strongly continuous
group of operators in suitable Sobolev spaces W:(£2). This enables
us to apply the well known general theory developed by T. Kato [14],
[15], [16]. Main points here are the study of the stationary pro-
blem (2.4), which has direct applications to interesting physical
problems, and the proof that the abstract theory of Kato applies to
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the initial-boundary value problem (2.2). Other approaches to pro-
blems (2.2) and (2.4) are possible, and we believe that the results
obtained here are partially known.

Let us consider the differential operator

(2.3) AW u=@-V)u + au, tel,

defined on vector fields v = (u,, ..., uy) in 2, and acting in the distri-
butional sense. We set

Di(t) = {ue W;: (v-V)ue Wi},
for each fixed te€ 1, and for each couple of integers I, k¥ such that

0<I<Ek, 1<k We denote by A%t) the restriction of the operator
#A(t) to the domain Di(t), i.e., we define

A¥u=£A{t)u, VueDit).

The lower index ! means that there are ! — 1 boundary conditions.
The definitions in case that k¥ < 0 will be postponed to section 5. On
treating the time independent case we drop the symbol ¢ from the
above symbols and definitions.

One has the following result.

THEOREM 2.1. Let k be a fiwed integer, let I' e Ol¥l+2, assume that

v,aecClkl  f E#0,
(Hz)

v, 0 € C* if k=0,

and that (2.1) holds. If 0 <1<k, the equation

(2.4) M+ (v(@)V)u + a@)u = f(x) in Q

has a unique solution w e Wy, for each f€ W%, provided |A| > 0, where
(2.5) 0 = (2, n, N, p, k)([0]js; + [alx), if E#0,

and 0,= 0, if k = 0. Here, ¢ denotes a suitable positive constant depend-
ing only on the variables inside brackets. Moreover, the solution u verifies
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the estimate
1
]l“l]k<m 171 -

If 1 = 0 the above result holds for any integer k. Finally, if 0 =1 < k,
and without assuming that (2.1) holds, there exists a linear continuous
map G € L(W*) such that v = Gf is a solution of (2.4), for each fe W*,
Moreover (3.18) holds. Here, we assume that I' € C* [resp. C1, if k = 0].

In particular theorem 2.1 shows that if » and @ are time inde-
pendent, then the operators A*, for any integer % [resp. A, for
0 <1<k, 1<Fk] generate strongly continuous groups of operators in
the Banach spaces W* [resp. W~

It is worth noting that (if ¥ > 0) the above estimates are trivially
obtained (and well known), if the coefficients and the solution are
sufficiently smooth. Here, we give a simple and rigorous prove of the
existence result. Cf. the remark 2.4.

By combining the above result with Kato’s results, we obtain the
following theorem.

THEOREM 2.2. Let k be a fixed integer (not necessarily monnegative).
Assume that I' € C'*1+2, that (2.1) holds, and that

(H,) v,a€ L>(I; Ol*lyn O(I; C'¥-1),  if k0.

If k= 0 assume that condition (H,) holds. Then, the family operators
{A*()}sery 98 (1, 0)-stable in W*, where by definition

0. = c(2, n, N, p, k)([v]1,|k| + [a']l,|k|) y f E#0,

and 0,=0, if k = 0. The map t — A(t) is norm continuous on I with
values in L(Wk, Wt-1), for k>1. In case that k> 1 all the above results
hold for the family {A%(¢)} in the space W', for each fived 1 =0, ..., k.

If uoeW* and fe LNI; W*), k not mecessarily nonegative, then the
Cauchy problem (2.2),, (2.2); has & unique strong solution u e C(I; W¥).
Furthermore, if 0 <1<k, 1<k, and if u,cW%, feL\I; W}), the
Cauchy-Dirichlet problem (2.2) has a unique strong solution uw € C(I; W3).
Moreover,

(2.6) el < (%ol + NIfllze) exp [6:T1 .

One also proves the following result.



252 H. Beirdo da Veiga

COROLLARY 2.3. Let 0 =1<Fk, let (H;) holds, and assume that
I'e O% [resp. C1, if k = 0]. Condition (2.1) is not required here. Then,
there ewists a linear continuous map G e L(W* X LY(I; W*); C(I; W*))
such that w = G(u,, f) is a solution of problem (2.2), for each pair
(ugy, f). Moreover,

(2.7) | ],r < €(£2, my Ny 2y B)( [ %0]lx + fllze) exp [6: 77 .

Convention. Whenever it is claimed that a property holds for
[A] > 0y, it is understand that in the definition of 6, a suitable choice
of ¢ is to be made.

It is worth noting that the theorems 2.1 and 2.2 are stated in a
form which is not convenient for applications to non-linear problems.
In fact, in many of the applications the coefficient v and the solu-
tion «# belong to the same Sobolev space. A main point here is that
the proofs work again if the coefficients v (and a) belong to suitable
Sobolev spaces, rather than to C*. One has to use just Sobolev’s
embedding theorems (and Holder’s inequality) in order to deal with
terms of the form D*v-Dfu. The choice of the particular Sobolev
spaces depends on the applications we have in mind. Since there are
only slight modifications to be made on the proofs, it seems preferable
to us to give the proofs for a specific case. We made the choice
v, & € C%, in order to avoid a continuous and trivial recall to Sobolev’s
embedding theorems. We state (below) the corresponding results
also for a specific case in which the coefficients belong to Sobolev spaces,
since we are interested on it for applications to the Euler (and similar)
equations. For convenience, we state this last results only in case
that & > 0 (since ¥ >2 in the above applications).

THEOREM 2.1*%. Let k& be a mon-negative integer, and let I'e C*+2,

Assume that (2.1) holds and that

We, if k>1 ,
() {%“E if k>1+ (n/p)

ve Wv*, acW?, if k<1 and p>n.

Let 0 <1<k Then, equation (2.4) has a unique solution w€ W for
each fe W¥, provided |A|>0f. Here,

0 = ¢(2, n, N, p, k)(”’v”k’!‘ lal) ifk=2,
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and
05 =07 = ¢(2, n, N, P)([?]1,e + lal), dfk<1.

Moreover,

1

llullk<m 11 -

Furthermore, equation (2.4) has a (unique) solution w e W ™, for each
feW;™. Moreover,

1

Jlins < fr g Ve

Finally, the last assertion of theorem 2.1 holds again by replacing 0,
by 0F in equation (3.18).
THEOREM 2.2*%. Let k be a non-negative integer, and let I'e C¥+2,
Assume that (2.1) holds, and that
v,a€ L=(I; W9 O O(I; We),  if k>1+ (nfp),

(H%) ve L®(I; Wv°) N C(I; L®), aeL*I; W)n OI; L),
ifEk<1, p>n.

Then, the family of operators {A}(8)},e;, s (1, 0y)-stable in W, where
by definition

H:EG(Q, n, N, p, k)("””l,k’l* ”a’”I,k)7 if k=2,

and

Oy = 0} = o |v] 11,0 + [|@]141) otherwhise .

If, in addition, u, € W¥, and fe€ L{(I; W*), then the Cauchy problem
(2.2);, (2.2); has a unique strong solution we€ C(I; W*). Moreover, if
0<l<k, and if w,cW¥, fe LNI; W¥), the above solution u belongs
to O(I; W%). Finally,

25) { Jllre < (J%o]lx + 11fll,z) exp [0 T,
- 16 s < (50 -2~ Nl s) €xp [0 T .

One also proves the following result.
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COROLLARY 2.3*. Let 0 =1<k, let (HY) holds, and assume that
I'eC* [resp. C, if k = 0]. Condition (2.1) is not required here. There
exists a linear operator G from Wk x LV(I; W*) into C(I; W*) such that
u = G(u,, f) is a solution of problem (2.2) for each pair (u,, f). Moreover
the estimates (2.8) hold provided the right hand sides are multiplied by
a switable constant ¢(2,n, N, p, k).

The following result will be usefull on dealing with nonlinear partial
differential equations. Similar results hold in connection with theo-
rem 2.2, and for the stationary problem.

COROLLARY 2.4*. Assume that w, b, 2,, g is another set of functions
verifying the hypothesis required in corollary 2.3*. Let w and z be the
solution of problem (2.2) for data v, a, u,, f and w, b, z,, g, respectively.
Then

(2.9) 2 — ] < € {|20— o+ Nlg— Fllr,5-1+
+ (Juolx 4+ Nfllse)(|w— 2] 16—+ | — @] 1,:-) exp [cOf T]exp [cu; T}

where p = o(|w]re+ [blnx)y 6F = e([v]nr+ [a]1e), and ¢ denotes dif-
ferent positive constants depending only on ,n, N, p, k.

REMARK. In all of the previous statements in which we do not
assume (2.1) (hence, the uniqueness may fail) it is understood that
the solution considered is that constructed in the corresponding proofs.

APPLICATIONS. In reference [6] we prove existence and regularity
for the solution of the stationary, compressible, Navier-Stokes equa-
tions, and its convergence to the corresponding solution of the incom-
pressible equations, as the Mach number goes to zero. A main tool
in the proof is the theorem 2.1 in reference [8], which is a variant of
the theorem 2.1 above.

An application of the last statement of theorem 2.1 is given by
Kohn and Lowe in his interesting paper [18].

Finally, as an application of theorem 2.2*, we provide in sec-
tion 6 a simple proof of the persistence property in Sobolev spaces
for the solution of the Euler equations (6.1) in a bounded domain
QcR n=2.

REMARK 2.4. The proof of the existence of a solution of equa-
tion (2.4) in spaces W* is not an immediate consequence of the a
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priori estimate (3.13) together with an existence theorem in stronger
spaces. Let us show the main obstacle. We consider, for convenience,
the case in which ve C* and ¢ =0, and (just to fix the ideas) we
recall the classical existence results of reference [19]. Let fe W=
The solution % of problem (2.4) (provided by [19] or by any other
existence result) is not sufficiently regular to justify the calculations
leading to (3.13). This obstacle is not overcome by approximating f
(in the W* norm) with a sequence f, € Wm2, for a fixed m such that
Wm2 > W1, gince v prevents the regularity of the solutions wu,.
However, if one also approximates » eC* (in the C* norm) by a se-
quence v, € O™, then one gets solutions u, € Wm? <> Wk+1, of problem
Mby + (0,°V)U, = f,, provided A>c¢[v,].. Moreover, the estimate
l%alle < [1/(2 — €[©n)m)]|ful%, V7, holds. However one can not pass to
the limit as » — + oo, since [v,], —> + oo.

We point out that one can overcome the above obstacle (if
0 =1=<Fk) by arguing as done for proving the point (iv) in theo-
rem 3.9 below (the existence of the solution of the equation Aw -+
+ @ V)u + au = f + (A— A)u is shown here by arguing as done
after equation (3.17), in the proof of theorem 3.8. This argument
is used also in reference [8]).

In the evolution case, there is a weaker counterpart of the above
obstacle. Again, the coefficient v(f,z) is not sufficient regular for
providing a solution (¢, #) to which the calculations leading to the
a priori estimate in Sobolev spaces applies rigorously. Nevertheless,
in the evolution case, if one approximates the coefficient » by regular
coefficients v,, one gets an estimate in the C(I; W*) norm, which is
independent of n. A compactness argument shows the existence of
a solution e L*(I; W*). However, we lose the strong continuity
on I with values in W* We note that, in order to prove this last
property by using the characteristics, quite hard arguments seems to
be necessary. See Bourguignon and Brezis[10]. It could appear
that all this question is artificial, since one should overcome it by
assuming that » is more regular. However, this last case is not suf-
ficient to deal with many interesting nonlinear problems.

REMARK 2.5. It is worth noting that the results and proofs given
here apply, with slight modifications, to the more general equation

Do+ Y a;D;u+ au = f,
i=1
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if the N XN symmetric matrices a,(?,#) verify the condition

n
>va;=0 on I,
=1

provided p = 2.

REMARK. First order hyperbolic systems in domains with boundary
have been studied by several authors. Since the main references are
well known, it seems unecessary to provide them here. Let us just
recall the references [1], [2], [5], [8], [12], [19], [20], [21], [22], [23],
which are more or less connected to our paper.

3. The stationary problem (case &k >0).

We start this section by proving the following auxiliary result:

PRI
LeMMA 3.1. Let k=1, and assume that v € C* satisfies the condi-

tion (2.1). Then, (v-V)ueW* if ueWtH,

Proor. By induetion on k. If k¥ = 1, the vectors Vu; and » (for
eachj =1,...,n) have the same direction, since %, = 0 on I'. Hence,
v-Vu; = 0. Assume now that the thesis holds for the value k, and
let 4 € W*2, By the induction hypothesis, one has (v-V)u € Wt On
the other hand, D,[(v-V)u]= [(Dv)-V]u + (v-V)D;u, i =1, ..., n.
The first term on the right hand side of this identity belongs to W=
The same holds for the second. one, by the induction hypothesis, since
Dyue Witt, m

" Lemma 3.2. Let tel be fiwed. Under the hypothesis of lemma 3.1,
and for each fized 1 = 0, ..., k, the linear subspace D%(t) is dense in Wy,
and A%(t) is a closed operator in W~.

ProoF. D*(t) is dense in W*, since (lemma 3.1) Wi+ic D).
Moreover Dx(t) is dense in Wt Let now ue€ Wt for a fixed I >1.
Since Witi= W*+1 N Wi+, one has (v-V)ueW:N W= Wk, This
shows that W%tic Dj(¢). Consequently, this last subspace is dense
in W;. The closedness” of the operators is quite immediate. m

The following two lemmas underlay our proofs.
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LemmA 3.3. Let pell,+ oo, w= (wy,.., wy)€Cl, and set
= (8 + |w|2)}, 6> 0. Then, for each x€ Q, one has

(31) S (Dw)-Dudr2w) = Ar*Dwls + L2 A4V (],

=1

and

(3.2) nz D,w)- Dy(Ar—2w) =

= 4-+{[(p — Dlwof+ 8] Dwl + 2 — p)[Jwls{ Dl — 3 (- (D))}

i=1

——

In particular, for each p €11, + oof, one has
(3.3) —wa-Ap—Zw >0, VYweW:.

Proor. We left to the reader the proofs of (3.1) and (3.2) (¥).
If we C*Q) vanishes on I, equation (3.3) follows upon integration
by parts. Since the set {we C?: w|,= 0} is dense in W;, (3.3) holds
also for we Wi. Note that A?2w,—> A?—2w strongly in Lelr-v  if
w, —w in L? (by a well known Krasnoselskii’s theorem). m

LemmA 3.4. Let w = (wy, ..., wy) € C.. Then
1 .
(3.4) A2 D,w) w = ]—) DA», i=1,..,n.
In particular, if ve CNQ) verifies (2.1), one has
(3.5) f[(v'V)w]-A"—zw = ——% f(div A7, Ywe W?i.

Proor. Left to the reader. ™o

(*) Recall the definitions (1.1) and (1.2).
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LEMMA 3.5. Assume that v € C' verifies (2.1), that a € C° and that
feLr. Let ue W' be a solution of

(3.6) M+ (0 V)u 4+ au=Ff.
Then, for |2 > 0 = ¢(p, N)([vl+ [al,) one has
(3.7) (121 = 6)ul, < Ifl5 -

In particular, the solution w of (3.6), if it exists, is unique.

ProoF. The proof is done by multiplying both sides of (3.6) by
(6 + |ul2)>-2/24, by integrating in 2, and by passing to the limit
as 6 >0t. m

THEOREM 3.6. Let the hypothesis (H,) and (2.1) be satisfied. Then,
for |A] > 0,, equation (3.6) has a unique solution uw € W: for each fe€ W3.
Moreover,

(3.8) (1] = ) Juls < [l

where, by definition, |u|, = |u|,+ |4u|,. In particular (in the time
dependent case) the family {Ai(t)}, teI, is (1,0,)-stable in W;, with
respect to the (equivalent) morm | |-

ProoF. Let e>0if 1> 0, e<0if 1 <0, and consider the elliptic
Dirichlet problem

{ —edu,+ g+ (v VYu,+ au,=f in Q,
(3.9)

(Ue)p=10.

In order to fix the ideas, assume that A > 0. For a sufficiently large 2,
the above problem has a unique solution u, € W%. Moreover (a crucial
point!)

(3.10) (Au)|,=0.

Hence Au, e W.. Set A= (6 + |4u,|*)}, where § > 0. Equations (3.3)
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and (3.5) imply

——fA(Aus)-AP—ZAue >0,
(3.11) 1
f[(v-V)Aue}A"—zAus = ~ f(div v) A7,

for each e > 0. Equation (3.11), together with the identity A[(v-V)u] =
= (v-V)du + 2Vo: V2u 4 (4v-V)u, yields

(3.12) fA[(v-V)ue]-/lp*MuE — ——%f(divv)/lh}—

+ 2f(VU:V2u€) A2 Au, —]—f[(Av-V)ue]'AP—ZAue ,

n
where Vo: V2u = Y (Dyv,)(D;D,u). By applying the operator 4 to
i,l=1
both sides of equations (3.9),, by taking the scalar product in R"
with A7-2Awu,, by integrating in Q, by taking in account (3.11), and
(3.12), it follows that

Zf]Au5]2A”—2 —11—) f(div ) A7 <

<f(2[Vv:V2u5] + [(4v-V)u,| + |A(au,)| + |Af])|AuAr—2 .

Since 0 < |due|A?* < A»-1, the Lebesgue’s dominated convergence
theorem applies, as 6 — 0+. Hence, the last inequality holds if A is
replaced by |4u.|. In particular (A — 6,) |Adu.|, < |4f|,. Consequently,
there exists a subsequence u. weakly convergent in W? to a limit .
Since & du,— 0, in L?, as ¢ — 0, it follows that % is a solution of (3.6),
and verifies (3.7). Clearly, (A— 6,)(|du|,+ |u|,) < (|4f],+ |fl») (use
also (3.7)). o

LeMMA 3.7. Let k>0, let fe Wk, let assume that (H;) and (2.1)
hold. If uwe Wkt is a solution of (3.6) then

(3.13) (141 = Be) ol < 7] -
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Proor. Let o = («,,...,,) be a multi-index, |x| = k. By using
an abbreviate notation, the application of the operator D> to both
sides of equation (3.6) yields

(3.14)  AD*u+ (v-V)D*u + 3 [(D*0)(Du) + ... + (Dv)(D*u)] +
+ > [(D*a)w + ... + a(D*u)] = D*f.

Set A = (8 + |D*u|2)}, where & is a positive parameter, and
|D*u|* = |D*u,|?; this summation is extended to all a such that
|¢| = %, and to all j, 1 <j < N. By multiplying both sides of equa-
tion (3.14) by A#-2D*u, by adding side by side for all « such that
|¢| = %, and by integrating in £, it follows that

2 f/l”‘le"ulzé % [div v]|A]3 4 e([0]x + [ale) [u]e|A[3™ + [Dfl| A

Note that

f[ > (v-V)D“u]-A"‘2D“u =;—)f('v-V)AP .

|a|=k
By passing to the limit on the above inequality, as é — 0+, one gets
(3.15) A|D*ul, < of[v]: + [ali) %]+ |D*f], .

Clearly, (3.15) holds for every integer k, such that 0 <k, < k.
By adding side by side all these estimates one gets (3.13). =

THEOREM 3.8. Let the hypothesis (H,) and (2.1) be satisfied. Then,
for |A| > 0y, the equation (3.6) has a unique solution weWy, for each
feW;i. Moreover,

(3.16) (1A= 0wl < [F]2 -

ProoF. Without loss of generality, we assume here that 4> 0.
For the time being we assume that (H,) holds, and that 1> 6,. Let
fm €W} be a sequence such that f,—f in W}, and let u,, € Wi be the
solution of the equation M+ (V) + 0ty = fn,. BEquation (3.13)
shows that w, is a Cauchy sequence in W}. Hence, its limit  is the
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solution of the equation Au - (v-V)u -4 aw = f. Moreover,
(3.17) (21— 6)[ul: < Ifl: -

Let now i€ 16,,0,] and fix a real 1 such that 2> 6,. Denote by
% = Tw the solution of the equation lu -+ (v-V)u + au = f 4+ (A— A)w,
where w e W;. It follows from (3.17) that T is a contraction in Wi.
The fixed point 4 = Tu is a solution of (3.6), and (3.16) holds.

Finally, if v and @ do not verify (H,), we approximate them (in
the C! norm) by two sequences v,, and a,, verifying (H,) and (2.1).
The solution u, of the corresponding equations verifies the esti-
mate (3.16). Hence, there exists a subsequence, which is weakly con-
vergent to an element u € W;. Clearly, « is a solution of (3.6), and
(3.16) holds. m

THEOREM 3.9. Let k>1, and let 1€{0,...,k}. Assume that the
conditions (H,) and (2.1) hold. Then, if |A| > 0., equation (3.6) has
a unique solution w e W=, for each feW*. Moreover,

(3.18) (14 = 6x) 1w < o(£2, n, N, p, ©) £ -

If I'e Clkl+2) the above solution w verifies the estimate (3.13).

Finally, without assuming (2.1), one has the following result. Assume
that I'e C* [resp. Ot if k = 0]. Let | = 0 and assume that the condition
(H,) is verified. Then, there exists a linear continuous map G € L(W*)
such that w = Gf is a solution of equation (3.6), for each f €W« More-
over, the estimate (3.18) holds.

ProoF. Step (i). Here we prove the first statement (including (3.18))
of the above theorem, for ! = k. The proof is done by induction on k.
For k¥ =1 the result was proved in theorem 3.8. Let us establish
it for k£ = 2. Assume that feW;, and that a,v € C%. Theorem 3.6
shows that equation (3.6) has a unique solution we W3, which
verifies (3.18). Let us show that u eW;. By differentiating (3.6)
with respect to z;, ¢ =1, ...,n, we get

(3.19) AD,u + (v-V)D;u + aD.u + [(Div)-Viu = D,f — (D:a)w .

This is again a system of type (3.6) in the nN variables D;u;, whose
solution D;u belongs to W!. On the other hand, D,f— (D;a)u € W;.
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Hence, theorem 3.8 guarantees the existence of a (unique) solution
in the space Wi, if |A| > ¢(2, n, nN, p) ([v]:+ [a],). By lemma 3.5,
the above two solutions coincide. This shows that w e W;.

Assume now that the thesis holds for values less than or equal
to k, k>2. Let feWt!, a,ve O, Since Wit} c Wk, the induction
hypothesis shows the existence of a unique solution u e Wi, verify-
ing (3.18). Moreover, D;f — (D;a)u € Wi, and the induction hypo-
thesis, applied to equation (3.19), shows that D,u e Wy, for |[A| >0=
= ¢(2, n, nN, p, k)([v]x+, + [a]:). Furthermore,

(141 = 0)| Dulls,» < o(2, n, nN, p, k)(| Df i + [aTess ) -

Hence, %ecW:), and u verifies (3.18) for a suitable constant
o(2,n, N, p, k).

Step (ii). Here, we prove the first statement of the theorem
for 1 =0, and also the statement in which (2.1) is not assumed.
Let B be an open ball such that 2c B, and let 8e £(C% C¥B)),
T e £(W*, Wi(B)), be linear continuous maps such that (Sv)|,= v,
(Sa)|o = a, (Tf)|o=f(*). Hence, S v is a continuation of » from £
to B, and so on. Set ¥ = Sv, & = Sa, f = Tf. The part (i) of our
proof shows the existence of a solution %€ W%(B) of problem A4 -+
-+ (#-V)d + @4 =f. Clearly, u = 4|, is a solution of (3.6). The
reader can easily verify that (3.18) holds, since ||, < |#|., and
since the norms of the maps 7 and S are bounded by constants
depending only on £, n, N, p, k.

Note that the existence of the solution # in Q2 was established
without using condition (2.1). Furthermore, the maps 8 and T exist
if I' is assumed to be only a Lipschitz manifold, since the continuation.
of functions in Sobolev spaces, from Q2 to B, can be done under this
hypothesis, by a Calderon’s result. Hence, the last assertion in
theorem 3.9 is proved.

Step (iii). The first statement of the theorem holds in W* (by
step (ii)) and in W} (by step (i)). Hence, it holds in W} = W* N W;,
tor each 1€ {0, ..., k}.

(2) Note that, for convenience, the same symbol S denotes two different
maps, since v is a vector and a is a matrix.
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Step (iv). We prove now that (3.13) holds if I'e Cl*+2, Obviously,
it suffices to take in accont the case I = 0. In order to fix the ideas
we assume that 4> 0. Let fe W*, and assume that a,v e C*t1, and
that (2.1) holds. Let f,eW*ty f —f in Wt If 4> 6,.,, the pro-
blem Au,-+ (v-V)u,+ au,= f., has a unique solution wu,, € Wr+1,
Moreover, lemma 3.7 shows that the estimate (3.13) holds for the
couple %, fn. This estimate proves that u, is a Cauchy sequence
in W*. It easily follows that the limit « is the solution of (3.6), and
that « verifies (3.13).

Now, we want to replace the above condition A > 0,1, by the weaker
assumption 4> 0,. Let v, a be as above, assume that 0,,> 1> 0,,
and let w € W* be the solution of equation (3.6), whose existence is
guaranteed by the first part of theorem 3.9. Fix 1> 0,;,. Since
Ju+ (v-V)u + au = f 4+ (A— A)u, the result proved above shows
that

(2= 0ol < £+ (A= D).

Hence, u verifies (3.13).

Finally, let »,a€ C*, and assumed that v verifies (2.1). Let
Uy @ € O¥+1, be such that v, verifies (2.1), and that v, >, a,—a
in C* ag m — -+ oo. Standard techniques show that such a sequence
v, exists. Let 1> 6,. We may assume that 1 > 07" = ¢([0n]c + [@nlx)-
Let u, be the solution of Au, -+ (V'V)%Un+ @nu, = f. By the above
result, (A— 0")|wum|x < |flx- It easily follows that w, —u weakly
in W*, that » is a solution of (3.6), and that (3.13) holds. m

COROLLARY 3.10. Under the assumption of theorem 3.9 the family
of operators {Af(t)}, is (1, 0,)-stable in W;.

Let us now congider the case k = 0. We start by defining the
operator A°.

DEFINITION 3.11. We define A°® as the closure in L* of the operator
A}: D} — WL

One easily verifies that A is preclosed in L*. In fact, if u, € Wi,
(v-V)u,e W, w,—~0 in L* and (v-V)u,+ au,—fin L?, then ff-tp =
= 1imf[(v-V)u,.—l— au,]*9p =0, as m — + oo, for every ¢eD(Q).
Hence f =0, which shows that A} is preclosed. Let us now solve
the equation Au 4 A% = f, for A>0, and fe L*. Let f,eW; be
a sequence convergent to f in Z?». By Lemma 3.5 it follows that
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(A— 0)) |4y — Un|p < |fn— ful|,. Hence u, —u in L*. It readily follows
that « € D°, that Aw + A% = f, and that (4— 0,)|u|,<|f|,. More-
over, one easily verifies that the solution € D° is unique. The reader
should note that D°c {u € L?: Au € Lr}.

REMARK. As above, one verifies that the operator A: D' — W1
is preclosed in L*. Since A} c A! and A + A° maps D° onto L?, for a
suitable A, it follows that A° is also the closure of A! in L.

The following result is now obvious.

LeMMA 3.12. The statements in theorem 3.9 and in Corollary 3.10
holds for k = 0.

4. The evolution problem (case %k>0).

PROOF OF THEOREM 2.2 (case k > 0). The first part of the theorem
(stability) was proved above. Now we prove the second part of the
theorem 2.2 by showing that the evolution operator U(t, s) associated
with {4}(¢)} is strongly continuous in W%, for each fixed pair I, ¥ such
that 0 <1 <k. We prove this result by using the theorem 5.2 of
Kato [14]. For convenience, the symbol K after the reference number
to an equation, an assumption, or a result, means that we refer to the
reference numbers on [14]. We set, in theorem 4.1-K, X = Wi,
Y = W} where k >1. From corollary 3.10 it follows that A} is
(1, 0,)-stable in X, and that 4% is (1, 6,)-stable in Y. Note that A¥
is the part of A*" in Y. In particular, assumptions (i)-K and (ii)-K
hold. The condition (iii)-K is easily verified; the inclusion Y c D¥'(z)
was proved in lemma 3.2. Moreover, the assumption (iv)-K in theo-
rem 5.1-K, and the assumption (v)-K in theorem 5.2-K hold (without
resort to an equivalent norm in Y). Hence, theorem 5.2-K shows
that the evolution operator U(t, s) is strongly continuous in Y, jointly
in ¢, s. Here, there are no exceptional values of £, as follows from
remarks 5.3-K and 5.4-K. In fact, our families of operators are re-
versible (for that reason, we have been considering the time interval
[— T, T] instead of [0, T7).

The strong continuity of U(¢, s) in L? follows together with that
in W}, since the assumptions done are the same in both cases.

The estimate (2.6) follows from the formulae w(t) = U(Z, 0)u, +

13
+ f U(t, s)f(s)ds, together with (¢) in theorem 5.1-K. m

]
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A REMARK ON THE PROOF OF THEOREM 2.2* Let £k >1 be fixed.
Under the hypothesis (H,) assumed in theorem 2.2, the theorem 2.1
furnishes the (1, 0,)-stability in ¥ = W* and in X = W*-1, gince (H,)
implies (H;—). On the contrary, in theorem 2.2* the hypothesis (H})
does not imply (H,), if 2 + (n/p) > k> 1 + (n/p). For that reason,
we establish in theorem 2.1* an independent estimate for |u[,—, under
the hypothesis (H}).

PRrROOF OF COROLLARY 2.3. The proof is similar to that done for
the stationary case, in part (ii) of the proof of theorem 3.9. Now, we
extend the coefficients v, a € L*(I; C*) N C(I; C*1) to coefficients ¥, G €
€ L=(I; C%B)) N C(I; O¥*(B)), and we extend the data fe L(I; W*)
and u, € W* to data fe LY(I; W%B)) and @, € W%(B). The extension
maps are linear and continuous between the corresponding function
spaces. Now, the existence of the solution #e C(I; Wi(B)) of the
evolution problem D,4 + (5-V)d + @i =¥, 4|,oq= @, is guaranted
by theorem 2. 2 The solution referred to, in corollary 2.3, is just the
restriction of 4 to I x Q.

Finally, the estimate (2.7) follows from (2.6), since |u|; < |4
and since the norms of ,, f, @, and &, are bounded by positive con-
stants ¢(£2, n, N, p, k) times the norms of %, f, @, and v, respectively.
Obviously, the norms of functions labeled by ~ or by A always
concern the domain B (and not Q).

The same device is used on proving the estimates stated in corol-
lary 2.3*. =

PROOF OF COROLLARY 2.4*%. The construction of the solutions u
and z shows that w(?) = 4(¢ IQ, 2(t) = 4(t)|,, where 4 and £ are the
golutions of the problems D+ (9-V)d + @i = f, U|pmo = Uy, and
D, 4 (@-V)% + b2 =, z|t=°_ Z,. Hence,

D(s— ) + @ V)(E— &) + Bz — @) =
(4.1) =@G—hH—[®—9-Vd— G—a)é, inIxQ,

(B— 4)|jmo="%F — @ on IXI.
By applying (2.8), to the solution £ — 4 of problem (4.1) we show that

18— @l < {120 — Folima + 11§ — Fllre—s 4
+ W@ — )+ V1@l i1 + 16 — @)l 15—} exp [ T1,
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where z} = ¢(||®] 1+ |8]::) < cuf. Recall that the symbol ¢ may
denote different constants. Now, we estimate the right hand side
of the above inequality by taking in account that |Z,— @], <
< ¢f[20— %ol (since Z— o= Z, —u,), and that a similar argument
applies to the terms g — f, % — #, and & — &. Moreover,

(@ — ) V1dllse— < ellw — ol s @] .1

and (by (2.8)1) |4, < cexp (c6F T)(||%ollx+ llfllz:)- The term (5— @)4
is treated in a similar way. Finally, |2 — %|p—, < |[€— 4)s—y,;. W

5. The case k <0 (stationary and evolution problem).

In this section, we consider the case &k < 0. The proofs are done
by using the corresponding results for k¥ > 0, together with duality
arguments. Since the method is the same for the stationary and for
the evolution case, we fix our attention on this last one, by proving
the theorem 2.2 for k¥ < 0. For convenience, we will denote the ne-
gative integers by — k, where k> 0. Let a* be the transpose of the
matrix a, and consider the formal adjoint B(¢) of A(t), i.e. the operator

Bt)p =— (v-V)p— (divo)p + a*gp,

acting in the distributional sense.
DEerFINiTION. For each t € I, we denote by Bk(t), k > 1, the operator
$B(t) with domain

Di(t) = {pe Wy (v-V)pe Wy},

where ¢ = p/(p — 1).

Since J(t) belongs to the class of operators defined by equation (2.3),
and since g € J1, 4 oo[, all the results proved in the preceeding sections
apply to the operators B(¢). In particular, if |i| > 0, one has

Aeo(Bkt), and |R(, Bit))| < m_l_'"é"’

where the resolvent operator acts now on the Banach space Wjpe.
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Note that the constant ¢, appearing on the definition of 0,, depends
now on ¢ instead of p. However, since ¢ = p/(p — 1), we may use
again the symbol 6,.

Recalling that BX(#) is closed and densely defined, we introduce
the following definition:

DEFINITION. Let k >1. For each te I, we denote by A_(t), the
adjoint of the operator Bi(t): Di%(t) — Wpe. In symbols

(3.1) A(t) = (BE(1)* .

By the way, note that A_,(¢) is the restriction of A(f) to the set
{u e Whr: A(tyu € W—r2},

If |A|>0,, one has (A4 Bit))*= 1+ A_.(t). On the other
hand, a well known result on Functional Analysis shows that
[(A + Bi(#)*]*= [(A + Bj(t))~*]*. Hence

R(2, A-4()) = (B(2, Bi(®))*,

moreover
(5:2) [ B(4 A-(®) g0 = [ B(4 Bi®))[eorps < 1/(|A] — 6x) -

This shows that the family {A_.(t)} is O.-stable in W-*
Let now k¥ >1. For each fixed ¢ €I, one has

(5.3) Bi(t) c BZi(4) € LW W,3°)

On the other hand, as shown in the previous sections, the domain of
BE(t) is dense in W¥? Hence Bj(t) can be defined (by density) as an
element of £(Wp?; Wi 1%). By duality, one gets from (5.3)

(5.4) A1) O Ayia(t) € L(WHH1 WF)

Since this last operator is the adjoint of B i(t) € L(WP?, Wi DY),
which is a continuous map on I, it follows from (5.4) that the restric-
tion of A_,(f) to W-*+1 defines a continuous map from I into
L(W-r+1; W-*), By setting X = W—*, ¥ = W* (k> 0) in theo-
rem 4.1 [14], one shows that the evolution operator U(t, s) is strongly
continuous in W-*, jointly in #,s. This proves theorem 2.2, in the
«negative case». MW
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6. Persistence property and Euler equations.

Persistence property means that the solution () at time ¢ belongs
to the same function space X as does the initial state, and describes
a continuous trajectory in X. A rigorous proof of this property could
be in many cases a difficult task. Here, we study the persistence
property under the effect of quite general external forces f, namely
fe L¥(I; X). However, the method applies to many other equations,
as for instance to the generalized Euler equations studied by H. Beirdo
da Veiga [3], or to the Euler equations for nonhomogeneous fluids,
see H. Beirdo da Veiga and A. Valli [4]. For the reader’s convenience
we illustrate this method by considering the Euler equations

D+ (w-VYu+Vae=f in IXQ,

(6.1) dive =0 in IxXQ,
uy=20 on IxI,
Uji=0 = Uo(Z) in 2,

in a bounded domain £2c R, n» >2. Without loss of generality, we
assume in the following statement that I = ]— oo, + oo.

THEOREM 6.1. Let k> 1 4 (n/p), where p € 11, + oof, and n > 2.
Assume that I'e C*, ug€W¥, uy'v =0 on I, divu,=0 in 2, fe
€ LY(I; W*). Then, there exists a local solution w e C(J; W*) of pro-
blem (6.1), where J = [— 7, 7] and v = c(2, n, p, k)(|to]x+ Nfllsz)2
Moreover, |u],. < ¢'(2,n, p, B)([4a]l+ lIfllrs)-

The exisistence of a loeal solution u € C(I*, W*) for problem (6.1)
is well known, if the external forces are regular. See Ebin and
Marsden [11] where f =0, and Bourguignon and Brezis[10] where
X = W=? and fe C(I; Ws+v»), However the proofs given by these
authors are harder then the one suggested here (specially that in
reference [11]). A simple proof of the existence of a local solution
w € L°(I*; W*), under the assumptions of theorem 6.1, is given by
Temam [24].

‘We notice that in reference [9] we establish also the well-posedness
of system (6.1) in Sobolev spaces W*?, by using Kato’s perturbation
theory. See [9], theorems 5.2 and 5.3. In reference [25] this result
is extended to non-homogeneous inviscid fluids.
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PROOF OF THEOREM 6.1. In the sequel we assume that the vector
field v, defined on I, is extended to a neighbourhood of I as a C*-!
vector field. The results do not depend on the particular extension of ».

For convenience, we work here in the interval I = [0, + oo[. Set
J = [0, 7], 7> 0, and define the convex set

K= {weL>(J; Wi)yn O(J; WE1): w|,_o= %, divw(t) = 0 in 2,
w(t)v =0 on I, Vted, |w|,,< 44, |w|,= B}.

The values of the positive constants 7, A, B will be fixed later on.
K is a closed, convex, bounded subset of the Banach space C(J; W*-1).
In fact, if w,e K, w,—>w as n —> -+ oo, it follows, by the weak*-
compactness of the bounded subsets of L*(J; W*) and by the lower
semi-continuity of the norm respect to the weak*-convergence, that
w e L>(J; W¥)and that |w],,, = 44.

Now we define a map 8 on K as follows. Let v € K and let & be
the solution of the problem

—Ax =Y (Dw,)(D,v,)—divf in 2,

L)

g? = Y (&w;[ex)o0;4 fv  on T,

53

for each teJ. Note that div[(v-V)v] = XZ(D;v,)(D;v;) + v-V(div o)
in Q, and that [(v-V)0v]'y = v-V(v-v) — Z(y,;/0w;)v;0; on I. Since
divo =0 in 2 and v-V(v-¥) = 0 on I, the compatibility condition
for the Neumann boundary value problem (6.2) is verified, and the
solution 7 exists and is determined up to an additive constant. How-
ever, we are interested only on Vax.
Theorem 2.2* guarantees the existence and the uniqueness of a
solution % of the evolution problem
{Dtu + @ Vu=f—Va inJxQ,
(6.3) ]
Ug=0 = U in Q.

We set Sv =wu, Vve K. By applying well known regularity re-
sults to the elliptic boundary value problem (6.2), one gets

IVl < evA®+ eliflls.e -
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We recall that the symbol ¢ may denote different positive constants,
even in the same equation. From (2.8,) it follows that

(6.4) [u];ns=ec ("“o"k + Al + TAz) exp [eAT].

On the other hand, from (6.3,) and from the above estimates, it
follows in particular that [|Diullse—1= ctd|u|s,r+ c|lfll:x+ crA2
Hence

(6.5) lulsi = olwoll -+ Wfllz) + cv42 + evA|u]ss .

Now we will use the Helmholtz decomposition of L7, namely
L= X,® G,. We refer to [13], for definition and results. A similar
argument (in L? spaces) is used, in reference [17], in order to study the
system (6.1). We denote by P and by @ = I — P the projections
associated with the above decomposition of L?. It is well known that
the restrictions of P and Q to W' are continuous from W' into W?,
1= 0. In particular, the norm of the linear map P is bounded in W*
and in Wt by a constant ‘¢ = ¢(2, n, p, k). Hence, from (6.4), it
follows that

[P < e (”“o“k + MMz, + TA-Z) exp [c,A7],

where, by definition, (Pu)(t) = P(u(t)), VieJ. We fix A = o;(|wo|,+
+ lIfll;,x), and we assume that v verify the conditions

(6.6) c;cAr<log2, c¢AT=1.

It readily follows that |Pu|,.= 44, Vve K. On the other hand,
since 74 < 1/e¢,, since |u],.= cA4, and since |Pu|sis= ¢|%]sr-1,
one easily verifies (by using (6.5)) that |Pu|,.— = ¢;4, for a suitable
constant ¢;. By defining B = ¢; 4, one has 7'(K)c K where, by de-
finition, T = PS.

Let us show that T is a strict contraction, respect to the C(J; Wk 1)
norm. Set = 8(v), 4’ = 8(v'), and. denote by (6.2") and (6.3') the
equations (6.2) and (6.3) with v, &, % replaced by v, n’, ', respectively.
From the equations (6.3) and (6.3'), and from (2.9), we deduce that
|9 — w] 1 =< ¢ exp [cAT]([|V(@' — 7) [ls1-1 + €xp [cA7] A [0 — ] s2-1)-
On the other hand, by subtracting the respective sides of equations
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(6.2) and (6.2"), one easily verifies that

IV — 7)o < 0A|0' — 0y, Vied.

Hence,

[Py’ — Pul;p— < e|u' — ||, < ¢, xp [¢; AT] AT|[0' — 0|3 -

Consequently, if
(6.7) csAr<log2, 4¢,A7=1,

one has |TW' — Tw|,;= %, Vv,0' € K.

Let v = Pu = PSv be the fixed point of 7. If we prove that
Py = u, then v = u, and equation (6.3) shows that « is a solution of
the Euler equations (6.1). Let us show that Qu(t) = u(t), Vie J. Since
Qw = 0 means that divw = 0 in 2, and that w-» = 0 on I, equation
(6.2) shows that Q((v-V)v + V& — f) = 0, VieJ. Hence, by applying
the operator @ to both sides of equation (6.3,), and by recalling that
%=+ Qu, itreadily follows that D,(Qu) + @Q[(v-V)Qu]= 0, Vte J. By
multiplying both sides scalarly in L2 by Qu, one gets(3).D;|Qu(t)|3.=0,
a.e. in J. Since Qu(0) = Qu,= 0, it follows that Qu(t) = 0, VieJ.
Hence Pu = u.

Finally, we remark that the conditions imposed on 7 in the above
proof, namely (6.6) and (6.7), follow from the assumption on the
value of 7 made in theorem 6.1. m
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