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Boundary-Value Problems
for a Class of First Order Partial Differential Equations
in Sobolev Spaces and Applications to the Euler Flow.

H. BEIRÃO DA VEIGA (*)

1. Notations.

Let Q be an open bounded subset of Rn, n &#x3E; 2, that lies (locally)
on one side of its boundary T, a C4 manifold. We denote by v the unit
outward normal to r.

For h(x) = where hrs are real functions defined on Q,
we define

where I is a nonegative integer, a = (al, ... , is a m-ulti-index, and
= al -f- ... + We set Ihl = IDOhl, IDlhl. If for each

couple of indices r, s one has hrs E X, where X is a function space,
we simply Write h E X.

(*) Indirizzo dell’A.: Istituto di Matematiche Applicate ((U. Dini », Via
Bonanno 25, 56100 Pisa, Italy.
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We will use the abbreviate notations

In general, if X and Y are Banach spaces, £(X, Y) denotes the
Banach space of all bounded linear maps from X into Y. We set

£(X) = X).
We denote by Ck, k &#x3E; 0, the Banach space consisting of functions

defined in 11, and which are restrictions to j0 of Ck(Rn) functions.
The canonical norm in the above space is denoted by [ Ca denotes
the subspace of Ck consisting of functions vanishing We denote by
L’P the Banach space EP(S2), and by 1 1, its canonical norm (see below).

The real number p E ]1, + oo[, and the domain S~ are fixed once
for all. For convenience these symbols will be dropped even from
some standard notations. According to this convention, Wk denotes
the Sobolev space Wk’P(Q) and II Ilk denotes the canonical norm ~~ 
(see below). However, in sections 3 and 4 some functional spaces are
defined with respect to an open set S~, and in section 5 some
functional spaces and operators are defined with respect to a value

p. In these cases, either the symbols B or q will be inserted in
the notation, or a different notation will be used.

We define 1, as the closure of in Wk, and W-k as
the dual space of Wkot1, where q = 1). Finally

where 0  t  k. For convenience, y we set Wk+~ _ Clearly, y
Wo = Wk, and Note that &#x3E; 1, is the subspace of Wk
consisting of functions vanishing on r together with their derivatives
of order less than or equal to t - 1.

The above notation will also be used to denote function spaces
whose elements are vector fields or matrices. For instance, both .Lp
and (N times) will be denoted by the same symbol EP,
and the corresponding norms by the same symbol I L,P Finally, for
h = (krs) E W k, k &#x3E; 0, we define
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In the sequel, T is a fixed positive real number, and I = [- T, T].
We use standard notations for functional spaces consisting of functions
defined on I with values in a Banach space. In particular, the canonical
norm in the Banach space Ll(l; Ck), k &#x3E; 0, is denoted by that
in LOO(I; Wk) by and that in yYk) by 1II1II¡,k.

In the sequel the symbol c may denote different positive constants.
The symbol N, p, k) means that c depends at most on the
variables inside brackets.

2. Results.

Let a==(ajk) be a matrix, be
a vector field, both defined on ZxD. Mostly we will assume here that

Let us consider the initial-boundary value problem

where I is a fixed nonegative integer (if I = 0, the equation (2.2),
is dropped), f = ( f l, ... , f N) is a given vector field in ~o is a

given vector field in S~ and = ... , v ~ ‘~uN ) .
In particular, we will show that the Cauchy-Dirichlet problem (2.2)

admits a solution u if and only if f verifies the condition f = ... _
= 0. Problem (2.2) will be studied in Sobolev spaces 
for arbitrary p E ]1, + oo [. Moreover, in case that I = 0, the pa-
rameter k is also allowed to be negative.

Our approach to the evolution problem looks interesting by itself:
Following the author’s paper [8], we will prove that the operator
~(t), defined by equation (2.3), is the generator of a strongly continuous
group of operators in suitable Sobolev spaces Wi (S2). This enables
us to apply the well known general theory developed by T. Kato [14],
[15], [16]. Main points here are the study of the stationary pro-
blem (2.4), y which has direct applications to interesting physical
problems, y and the proof that the abstract theory of Kato applies to
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the initial-boundary value problem (2.2). Other approaches to pro-
blems (2.2) and (2.4) are possible, and we believe that the results
obtained here are partially known.

Let us consider the differential operator

defined on vector fields u = (ul , ... , uN) in S~, and acting in the distri-
butional sense. We set

for each fixed t c 1, and for each couple of integers l, k such that
0  t ~ 1~, 7 1  1~. We denote the restriction of the operator
A(t) to the domain i.e., we define

The lower index I means that there are t - 1 boundary conditions.
The definitions in case 0 will be postponed to section 5. On
treating the time independent case we drop the symbol t from the
above symbols and definitions.

One has the following result.

THEOREM 2.1. Let k be a fixed integer, let FË assume that

and that (2.1 ) holds. If 0 s l k, the equation

has a unique solution u E for each f E provided &#x3E; where

and 00 = 81 if k = 0. Here, c denotes a suitable positive constant depend-
ing only on the variables inside brackets. Moreover, the solution u verifies
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the estimate

If 1 = 0 the above result holds for any integer if 0 = l  k,
and without assuming that (2.1 ) holds, there exists a linear continuous
map G E such that u = G f is a solution of ( 2 . 4 ) , for each f E W k.
Moreover (3.18) holds. Here, we assume that r E ek [resp. C’, if k = 0].

In particular theorem 2.1 shows that if v and a are time inde-
pendent, then the operators Ak, for any integer k [resp. Ai, for

0  l  1~, 1  1~] generate strongly continuous groups of operators in
the Banach spaces Wk [resp. 

It is worth noting that &#x3E; 0) the above estimates are trivially
obtained (and well known), if the coefficients and the solution are

sufficiently smooth. Here, we give a simple and rigorous prove of the
existence result. Cf. the remark 2.4.

By combining the above result with Kato’s results, we obtain the
following theorem.

THEOREM 2.2. Let k be a fixed integer (not necessarily nonnegative).
Assume that FE Olkl+2, that (2.1 ) holds, and that

If k = 0 assume that condition (HI) holds. Then, the family operators
is in Wk, where by definitionI k(t)},Cl, is Wk, where by ..

and 60 = 8~ if k = 0. T he map t - A(t) is norm continuous on I with
values in Wk-i), for In case that k &#x3E; 1 all the above results
hold for the f amily ~.A. i (t)~ in the space for each f ixed l = 0, ... , k.

If uo and f E .L 1 (I ; Wk), k not necessarily nonegative, then the
Cauch y problem ( 2 . 2 ) 1, ( 2 . 2 ) 3 has a unique strong solution u E C ( I ; Wk).
Furthermore, if 0  l  k, 1  k, and if uo E W’a, f E .L1 (1; ~W’i ), the

Ca2cchy-Dirichlet problem (2.2) has a unique strong solution u E C(I ; 
Moreover,

One also proves the following result.
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COROLLARY 2.3. Let 0 = l  k, let (Hk) holds, and assume that
FE Ck [resp. 01, if k = 0]. Condition (2.1 ) is not required here. Then,
there exists a linear continuous map G E X L1(I ; ~W’k) ; C(I ; Wk))
such that u = f) is a solution o f problem (2.2), for each pair
(uo, f). Moreover,

Convention. Whenever it is claimed that a property holds for

&#x3E; it is understand that in the definition of 0, a suitable choice
of c is to be made.

It is worth noting that the theorems 2.1 and 2.2 are stated in a
form which is not convenient for applications to non-linear problems.
In fact, in many of the applications the coefficient v and the solu-
tion u belong to the same Sobolev space. A main point here is that
the proofs work again if the coefficients (and a) belong to suitable
Sobolev spaces, rather than to ek. One has to use just Sobolev’s
embedding theorems (and Holder’s inequality) in order to deal with
terms of the form The choice of the particular Sobolev
spaces depends on the applications we have in mind. Since there are

only slight modifications to be made on the proofs, it seems preferable
to us to give the proofs for a specific case. We made the choice

v, a E ek, in order to avoid a continuous and trivial recall to Sobolev’s
embedding theorems. We state (below) the corresponding results
also for a specific case in which the coefficients belong to Sobolev spaces,
since we are interested on it for applications to the Euler (and similar)
equations. For convenience, we state this last results only in case
that k &#x3E; 0 (since k &#x3E; 2 in the above applications).

THEOREM 2.1*. Let k be a non-negative integer, and let 1’ E Ck+2.
Assume that (2.1 ) holds and that

Let 0  I  k. Then, equations (2.4) has a unique solution U E for
each f E 1~’i , provided &#x3E; 8k Here,
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and

Moreover,

Furthermore, equation (2.4) has a (unique) solution u E W i-~, for eac h
f EW:-1. Moreover,

the last assertion of theorem 2.1 holds again by replacing 8k
by ok in equation (3.18).

THEOREM 2.2*. Let k be a non-negative integer, and let Ck+2.
Assume that ( 2.1 ) holds, and that

Then, the family o f operators where

by definition

and

otherwhise .

I f , in addition, Uo E yD’k, and f E L1(I ; Wk), then the Cauchy problem
(2 .2 ) 1, ( 2.2 ) 3 has a unique strong solution U E C(I ; Wk). Moreover, if
0  l  k, and i f uo f E .L1(I ; Wi ), the above solution u belongs
to C(I ; W i ) Finally,

One also proves the following result.
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COROLLARY 2.3*. Let 0 = I ~ k, let (.Flk ) holds, and assume that
TeOk [resp. C’, if k = 0]. Condition (2.1 ) is not required here. There
exists a linear operator G ft-om Wk X L1 (I ; yV’k) into C(I ; Wk) such that
n = f) is a solution of problem (2.2 ) for each pair (uo, f). Moreover
the estimates (2.8) hold provided the right hand sides are multiplied by
a suitable constant c(Q, n, N, p, k).

The following result will be usefull on dealing with nonlinear partial
differential equations. Similar results hold in connection with theo-
rem 2.2, and for the stationary problem.

COROLL.ARY’ 2.4*..Assume that w, b, zo , g is another set of f unetions
verifying the hypothesis required in corollary 2.3*. Let u and z be the
solution of problem (2.2) for data v, a, uo , f and w, b, zo, g, respectively.
Then

where and c denotes dif-
ferent positive constants depending only on Q, n, N, p, k.

REMARK. In all of the previous statements in which we do not
assume (2.1) (hence, the uniqueness may fail) it is understood that
the solution considered is that constructed in the corresponding proofs.

APPLICATIONS. In reference [6] we prove existence and regularity
for the solution of the stationary, compressible, Navier-Stokes equa-
tions, and its convergence to the corresponding solution of the incom-
pressible equations, as the Mach number goes to zero. A main tool
in the proof is the theorem 2.1 in reference [8], which is a variant of
the theorem 2.1 above.

An application of the last statement of theorem 2.1 is given by
Kohn and Lowe in his interesting paper [18].

Finally, as an application of theorem 2.2*, we provide in sec-
tion 6 a simple proof of the persistence property in Sobolev spaces
for the solution of the Euler equations (6.1) in a bounded domain
S2CRn, n&#x3E;2.

REMARK 2.4. The proof of the existence of a solution of equa-
tion (2.4) in spaces Wk is not an immediate consequence of the a
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priori estimate (3.13) together with an existence theorem in stronger
spaces. Let us show the main obstacle. We consider, for convenience,
the case in which v E Ck and a n 0, and (just to fix the ideas) we
recall the classical existence results of reference [19]. Let f E Wk.
The solution u of problem (2.4) (provided by [19] or by any other
existence result) is not sufficiently regular to justify the calculations
leading to (3.13). This obstacle is not overcome by approximating f
(in the Wk norm) with a sequence f n EWm,2, for a fixed m such that

- Wk+i; since v prevents the regularity of the solutions u..

However, if one also approximates V eCk (in the Ck norm) by a se-
quence vn E Cm, then one gets solutions un E Wm,2 c-+ Wk+1, of problem

provided Moreover, the estimate

’BIn, holds. However one can not pass to
the limit as n - + oo, since - + 00.

We point out that one can overcome the above obstacle (if
0 = Z c_ k) by arguing as done for proving the point (iv) in theo-
rem 3.9 below (the existence of the solution of the equation iu +
+ + au = f + (5 - A) u is shown here by arguing as done
after equation (3.17), in the proof of theorem 3.8. This argument
is used also in reference [8]).

In the evolution case, there is a weaker counterpart of the above
obstacle. Again, the coefficient v(t, x) is not sufficient regular for

providing a solution u(t, x) to which the calculations leading to the
a priori estimate in Sobolev spaces applies rigorously. Nevertheless,
in the evolution case, if one approximates the coefficient v by regular
coefficients vn, 9 one gets an estimate in the C(I; ~W’k) norm, which is
independent of n. A compactness argument shows the existence of
a W). However, we lose the strong continuity
on I with values in Wk. We note that, in order to prove this last
property by using the characteristics, quite hard arguments seems to
be necessary. See Bourguignon and Brezis [10]. It could appear
that all this question is artificial, since one should overcome it by
assuming that v is more regular. However, this last case is not suf-
ficient to deal with many interesting nonlinear problems.

REMARK 2.5. It is worth noting that the results and proofs given
here apply, with slight modifications, to the more general equation
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if the N X N symmetric matrices ai(t, x) verify the condition

provided p = 2.

REMARK. First order hyperbolic systems in domains with boundary
have been studied by several authors. Since the main references are
well known, it seems unecessary to provide them here. Let us just
recall the references [1], [2], [5], [8], [12], [19], [20], [21], [22], [23],
which are more or less connected to our paper.

3. The stationary problem ( case ~~0).

We start this section by proving the following auxiliary result:

LEMMA 3.1. Let k &#x3E;1, and assume that v E Ck eondi-
tion (2.1). Then, 
~~~

PROOF. By induction on k. If k = 1, the vectors and v (for
each j = 1,.... n) have the same direction, since ’Ui = 0 on 7~. Hence,

o. Assume now that the thesis holds for the value 1~, and
let By the induction hypothesis, one has On
the other hand, + = 1, ..., n.
The first term on the right hand side of this identity belongs to T#k.
The same holds for the second one, by the induction hypothesis, since
DiuE Wk+1k.

LEMMA 3.2. Let be Under the hypothesis o f lemma 3.1,
and f or each Z = 0, ... , k, the linear subspace is dense in 
and .~.i(t) is ac closed operator in W~.

is dense in Wk, since (lemma 3.1) 
Moreover Dk(t) is dense in Wk. Let now for a 1.

Since one has This
shows that Consequently, this last subspace is dense
in W~. The losedness§°of the operators is quite immediate..

The following two lemmas underlay our proofs.
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and

In particular, for each p E ]1, -~- 00[, one has

PROOF. We left to the reader the proofs of (3.1) and (3.2) (1).
vanishes on T, equation (3.3) follows upon integration

by parts. Since the set C2 : 0} is dense in (3.3) holds
also for Note that strongly in .L~l ~p-1~, if

in Lp (by a well known Krasnoselskii’s theorem).

In particular, if v E verifies (2.1), one has

PROOF. Left to the reader.

(1) Recall the definitions ( 1.1 ) and (1.2).
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LEMMA 3.5. Assume that v E 01 verifies (2.1 ), that a E CO and that
f E .Lp. Let u E ~P1 be a solution of

Then, for one has

In particular, the solution u of (3.6), if it exists, is unique.

PROOF. The proof is done by multiplying both sides of (3.6) by
(ð -~- I~I2)~p-2)/2u’ by integrating in S~, and by passing to the limit
as 6 - 0+.

THEOREM 3.6. Let the hypothesis (H2) and (2.1) be satisfied. Then,
for (J2’ equation (3.6 ) has a unique solution u for each f E 
Moreover,

where, by definition, = ~ In particular (in the time

dependent case) the family ~Ai(t)~, t E I, is (1, ()2)-stable in with

respect to the (equivalent) norm II 11’ 2-

PROOF. Let 8&#x3E; 0 if 2 &#x3E; 0, 8  0 if Â  0, and consider the elliptic
Dirichlet problem

In order to fix the ideas, assume that h &#x3E; 0. For a sufficiently large Â,
the above problem has a unique solution u. E Wf . Moreover (a crucial
point ! )

Hence Jus E Set . where 3 &#x3E; 0. Equations (3.3)
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and (3.5) imply

for each 8 &#x3E; 0 = Equation (3~11)2 together with the identity .

where By applying the operator d to

both sides of equations (3-9),, by taking the scalar product in Rn
with by integrating in S~, by taking in account (3.ll)i and
(3.12), it follows that

Since 0  lp-1, the Lebesgue’s dominated convergence
theorem applies, as 6 - 0+. Hence, the last inequality holds if A is
replaced by In particular (1 - ()2) Consequently,
there exists a subsequence weakly convergent in Wf to a limit u.
Since e Aue -+ 0, in .Lp, as s -+ 0, it follows that u is a solution of (3.6),
and verifies (3.7). Clearly, (A - + lulp)  (ILlflp + (use
also (3.7)). E

LEMMA 3.7..Let k &#x3E; 0, let f E yVk, let assume that (Hk) and (2.1 )
hold. If u E Wk+i is a solution of (3.6) then
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PROOF. Let a = (a1, ..., an) be a multi-index, jai = 1~. By using
an abbreviate notation, the application of the operator Dcx to both
sides of equation (3.6) yields

Set where 6 is a positive parameter, and
this summation is extended to all a such that

jai = k, and to all j, 1 s j  N. By multiplying both sides of equa-
tion (3.14) by by adding side by side for all a such that
jai = 1~, and by integrating in S~, it f ollows that

Note that

By passing to the limit on the above inequality, as 6 -~ 0+, one gets

Clearly, (3.15) holds for every integer ko such that 0  ko  k.
By adding side by side all these estimates one gets (3.13 ) .

THEOREM 3.8. Let the hypothesis (HI) and (2.1) be satis f ied. Then,
for IÂI &#x3E; 81, the equation (3.6) has ac unique solution ~c for each
f Moreover,

PROOF. Without loss of generality, we assume here that A &#x3E; 0.
For the time being we assume that holds, y and that ~&#x3E; 62. Let

f m E Wi be a sequence such that fm -+ f in yV’~ , and let be the

solution of the equation (v.V)um+ au. = f m . Equation (3.13 )
shows that Urn is a Cauchy sequence in W~. Hence, its limit u is the
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solution of the equation Moreover,

Let now ]0i, 0,] and fix a real 1 such that X &#x3E; e2. Denote by
~c = Tw the solution of the equation 1u + + an = f + (I - A) W,
where It follows from (3.17) that T is a contraction in W:.
The fixed point u = Tu is a solution of (3.6), and (3.16) holds.

Finally, if v and a do not verify (.~2) , we approximate them (in
the C’ norm) by two sequences vm and acm, verifying (H2) and (2.1).
The solution Um of the corresponding equations verifies the esti-
mate (3.16). Hence, there exists a subsequence, which is weakly con-
vergent to an element u E -Wl. Clearly, u is a solution of (3.6), and
(3.16) holds.

THEOREM 3.9. Let k &#x3E; 1, and let Z E ~0, ... , k~ . that the
conditions (.Hk) and (2.1) hold. Then, if &#x3E; 0,, equation (3.6) has
a unique solution ~c for each f E ..lVloreover,

I f the above solution u verifies the estimate (3.13).
Finally, without assuming (2.1), one has the following result. Assume

that rcek [resp. C1 if k = 0]. Let I = 0 and assume that the condition
is verified. Then, there exists a linear continuous map G 

such that u = Gf is a solution of equation (3.6), tor each f E Wk. More-
over, the estimate (3.18 ) holds.

PROOF. Step (i). Here we prove the first statement (including ( 3 .18 ) )
of the above theorem, for 1 = 7~. The proof is done by induction on k.
For 1~ = 1 the result was proved in theorem 3.8. Let us establish
it for k = 2. Assume that f C -W2, and that a, v E C2. Theorem 3.6

shows that equation (3.6) has a unique solution a C TV2, which

verifies (3.18). Let us show that U E W2 . By differentiating (3.6)
with respect to xi, i = 1, ..., n, we get

This is again a system of type (3.6) in the nN variables whose

solution Di u belongs to WI. On the other hand, Di f - W~.
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Hence, theorem 3.8 guarantees the existence of a (unique) solution
in the space W~ , if IÂI [a],,). By lemma 3.5,
the above two solutions coincide. This shows that u E W2 .

Assume now that the thesis holds for values less than or equal
to k, k &#x3E; 2. Let f E ek+l. Since c W§J , the induction
hypothesis shows the existence of a unique solution verify-
ing (3.18). Moreover, and the induction hypo-
thesis, applied to equation (3.19 ) , y shows that for &#x3E; 8 -

n, nN, Furthermore,

Hence, and u verifies (3.18) for a suitable constant

"7 N, p, k).

Step (ii). Here, we prove the first statement of the theorem
for I = 0, and also the statement in which (2.1) is not assumed.
Let B be an open ball such that and let S E C( Ok, 

~k(B) ), be linear continuous maps such that = v,

( ~’a ) ~ ~ = a , ( T f ) ~ ~ = f ( 2 ) . Hence, S v is a continuation of v from Q
to B, and so on. Set v = Sv, a = Sa, f = Tf. The part (i) of our

proof shows the existence of a solution i E Wk(B) of problem +
+ (lY . V) 6 + £6 = f. is a solution of (3.6). The
reader can easily verify that (3.18) holds, since and
since the norms of the maps T and S are bounded by constants
depending only on Q, n, N, p, k.

Note that the existence of the solution u in S2 was established
without using condition (2.1). Furthermore, the maps S and T exist
if h is assumed to be only a Lipschitz manifold, since the continuation
of functions in Sobolev spaces, from ,~ to B, can be done under this
hypothesis, by a Calderon’s result. Hence, the last assertion in

theorem 3.9 is proved.

Step (iii). The first statement of the theorem holds in Wk (by
step (ii)) and in Wi (by step (i)). Hence, it holds in W§ = Wk () Wi,
for each I E (0 , ... , 1~~.

(2) Note that, for convenience, the same symbol S denotes two different
maps, since v is a vector and a is a matrix.
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Step ( iv) . We prove now that (3.13) holds if 1’ E Olkl+2. Obviously,
it suffices to take in accont the case I = 0. In order to fix the ideas
we assume that Â &#x3E; 0. Let f G’Wk, and assume that a, v E and
that (2.1) holds. Let in Wk. If I the pro-
blem has a unique solution u. E W k+1.

Moreover, lemma 3.7 shows that the estimate (3.13) holds for the
couple um, fm. This estimate proves that u,, is a Cauchy sequence
in Wk. It easily follows that the limit u is the solution of (3.6), and
that -a verities (3.13).

Now, we want to replace the above condition ~, &#x3E; 8k+1 by the weaker
assumption ~, &#x3E; 8k . Let v, a be as above, assume that &#x3E; 011
and be the solution of equation (3.6), whose existence is
guaranteed by the first part of theorem 3.9. Since

~-p(~’V)~-t-~=/+(~2013~)~ the result proved above shows
that

Hence, u verifies (3.13).
Finally, let and assumed that v verifies (2.1). Let

vm,amEOk+1, 7 be such that vm verifies (2.1),andthatvm~v, 
in Ck as m --~ + 00. Standard techniques show that such a sequence
vm exists. We may assume that k &#x3E; 0(m) + [acm]k) ·
Let um be the solution of Aum + (vm. V) um + amum = f . By the above
result, It easily follows that weakly
in W k, that u is a solution of (3.6), and that (3.13) holds.

COROLLARY 3.10. Under the assumption of theorem 3.9 the family
of operators is (1, Ok)-stable in ’Wk 1.

Let us now consider the 0. We start by defining the
operator A°.

DEFINITION 3.11. W e define A° as the elosure in Z~ of the operator
A11: D11 -+ W11.

One easily verifies that Ai is preclosed in lp. In fact, if u,, E Wi,
in Z~ and 

as n - + for every 
Hence f = 0, which shows that Aî is preclosed. Let us now solve
the equation for ~, &#x3E; 81 and Let be

a sequence convergent to f in Lp. By Lemma 3.5 it follows that
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(A - 0i))~2013 p  · Hence un - u in L". It readily follows
that u E D°, that Au + = f , and that (1 - 81 ) ~ ~c ~ D  ~ More-

over, one easily verifies that the solution E D° is unique. The reader
should note that DO c ~~c E Lp : Au E 

REMARK. As above, one verifies that the operator AI: Wi
is preclosed in LP. Since Ai c Al and A + A° maps DO onto Lp, for a
suitable ,1, it follows that A° is also the closure of All in Z~.

The following result is now obvious.

LEMMA 3.12. T he statements in theorem 3.9 and in Corollary 3.10
holds for k = 0.

4. The evolution problem ( case 

PROOF OF THEOREM 2.2 (case k &#x3E; 0). The first part of the theorem
(stability) was proved above. Now we prove the second part of the
theorem 2.2 by showing that the evolution operator U(t, s) associated
with is strongly continuous in W’ , for each fixed pair l, k such
that 0  1  k. We prove this result by using the theorem 5.2 of
Kato [14]. For convenience, the symbol K after the reference number
to an equation, an assumption, or a result, means that we refer to the
reference numbers on [14]. We set, in theorem 4.1-g, X = W¡t,
Y where k &#x3E; 1. From corollary 3.10 it follows that is

(1, 0,,)-stable in X, and that Ai is (1, 0,,)-stable in Y. Note that Ai
is the part of A¡l in Y. In particular, assumptions (i)-K and (ii)-g
hold. The condition (iii)-K is easily verified; the inclusion Y c 
was proved in lemma 3.2. Moreover, the assumption (iv)-K in theo-
rem ~.1-I~, and the assumption (v)-K in theorem 5.2-g hold (without
resort to an equivalent norm in Y). Hence, theorem ~.2-.K shows
that the evolution operator U(t, s) is strongly continuous in Y, jointly
in t, s. Here, there are no exceptional values of t, as follows from
remarks 5.3-K and 5.4-.g. In fact, our families of operators are re-
versible (for that reason, we have been considering the time interval
[- T, T] instead of [0, T]).

The strong continuity of U(t,8) in L2, follows together with that
in since the assumptions done are the same in both cases.

The estimate (2.6) follows from the formulae u(t) = U(t, +
t

s) f (s) ds, together with (e) in theorem ~.1-.K.
o
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A REMARK ON THE PROOF OF THEOREM 2.2*. Let k:21 be fixed.
Under the hypothesis assumed in theorem 2.2, the theorem 2.1
furnishes the (1, 0,)-stability in Y= Wk and in since 

implies On the contrary, in theorem 2.2* the hypothesis (H:)
does not imply (.gk 1 ) , if 2 + &#x3E; k &#x3E; 1 + For that reason,
we establish in theorem 2.1 * an independent estimate for under
the hypothesis (H:).

PROOF OF COROLLARY 2.3. The proof is similar to that done for
the stationary case, in part (ii) of the proof of theorem 3.9. Now, we
extend the coefficients v, ac E LOO(I; Ck) n C(I ; ek-1) to coefficients 0, d E
E L°°(I ; n C(I ; ~Co 1(B) ), and we extend the data Wk)
and uo E Wk to data and ico E The extension

maps are linear and continuous between the corresponding function
spaces. Now, the existence of the solution of the
evolution problem Dtû + + àû ==1, is guaranted
by theorem 2.2. The solution referred to, in corollary 2.3, is just the
restriction of u to I X Q.

Finally, the estimate (2.7) follows from (2.6), since 
and since the norms of uo, i, à, and V, are bounded by positive con-
stants n, N, p, k) times the norms of f , a, and v, respectively.
Obviously, the norms of functions labeled by - or by A always
concern the domain B (and not S~).

The same device is used on proving the estimates stated in corol-
lary 2.3 *.

PROOF OF COROLLARY 2.4*. The construction of the solutions u
and z shows that u(t) = û(t)IQ, z(t) = where 6 and ~ are the
solutions of the problems and

, Hence,

By applying (2.8)2 to the solution z - u of problem (4.1) we show that
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where = Recall that the symbol c may
denote different constants. Now, we estimate the right hand side
of the above inequality by taking in account that 

and that a similar argument
applies to the terms g - f , w - v, and b - f. Moreover, y

is treated in a similar way. Finally,

5. The case k  0 (stationary and evolution problem).

In this section, we consider the case k  0. The proofs are done
by using the corresponding results f or k &#x3E; 0, together with duality
arguments. Since the method is the same for the stationary and for
the evolution case, we fix our attention on this last one, by proving
the theorem 2.2 f or k  0. For convenience, we will denote the ne-
gative integers by - k, where k &#x3E; 0. Let a* be the transpose of the
matrix a, and consider the formal adjoint of ~(t), i.e. the operator

acting in the distributional sense.

DEFINITION. For each t E I, we denote by B’(t), k &#x3E; 1, the operator
with domain

where q = p / ( p - 1).
Since belongs to the class of operators defined by equation (2.3), y

and since q E ]1, + oo[, all the results proved in the preceeding sections
apply to the operators In particular, if I one has

where the resolvent operator acts now on the Banach space 
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Note that the constant c, appearing on the definition of depends
now on q instead of p. However, y since q = p/(p - 1 ), we may use
again the symbol 9~.

Recalling that is closed and densely defined, we introduce
the following definition :

DEFINITION. Let k &#x3E; each we denote by A_k(t), the

adjoint o f the operator -~ In symbols

By the way, note that A_k(t) is the restriction of A(t) to the set

~2G E E 

If one has ( ~, -~-~ Bk(t) ) * _ ~, -+- .d_k (t). On the other

hand, a well known result on Functional Analysis shows that
. Hence

moreover

This shows that the family {A-k(t)} is 0,-stable in W-k.
Let now k &#x3E; 1. For each fixed t E I, one has

On the other hand, as shown in the previous sections, the domain of
Bk(t) is dense in Hence Bk(t) can be defined (by density) as an
element yYk=~ q ) . By duality, one gets from (5.3)

Since this last operator is the adjoint of E 

which is a continuous map on I, it follows from (5.4) that the restric-
tion of A-k(t) to W-k+l defines a continuous map from I into

yy’-k). By setting X = W-k, Y = W-k+i (k &#x3E; 0) in theo-
rem 4.1 [14], one shows that the evolution operator U(t, s) is strongly
continuous in W-k, jointly in t, s. This proves theorem 2.2, in the
« negative case &#x3E;&#x3E;.
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6. Persistence property and Euler equations. 
I

Persistence property means that the solution at time t belongs
to the same function space X as does the initial state, and describes
a continuous trajectory in X. A rigorous proof of this property could
be in many cases a difficult task. Here, we study the persistence
property under the effect of quite general external f orces f , namely
t E L1(I; X ). However, the method applies to many other equations,
as for instance to the generalized Euler equations studied by H. Beirao
da Veiga [3], or to the Euler equations for nonhomogeneous fluids,
see H. Beirao da Veiga and A. Valli [4]. For the reader’s convenience
we illustrate this method by considering the Euler equations

in a bounded domain S~ c R, n &#x3E; 2. Without loss of generality, we
assume in the following statement that I = ]- oo, + oo[.

THEOREM 1 + (n/p), where p E ]1, -E- oo[, and n &#x3E; 2.

Assume that FE Ck7 uo.v = 0 on F, div u0 = 0 in Q, f E
Wk). Then, there exists a local solution u E C(J; Wk) o f pro-

blem (6.1), where J= r, í] and -r = c(D, n, p, 
.Moreover, n, p, 

The exisistence of a local solution u e C(I*, Wk) for problem (6.1)
is well known, if the external forces are regular. See Ebin and
Marsden [11] where f = 0, and Bourguignon and Brezis [10] where
X = and f E C(I ; TVs+",P). However the proofs given by these
authors are harder then the one suggested here (specially that in
reference [11]). A simple proof of the existence of a local solution
u E LOO(I*; Wk), under the assumptions of theorem 6.1, is given by
Temam [24].
We notice that in reference [9] we establish also the well-posedness

of system (6.1) in Sobolev spaces by using Kato’s perturbation
theory. See [9], theorems 5.2 and 5.3. In reference [25] this result
is extended to non-homogeneous inviscid fluids.
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PROOF OF THEOREM 6.1. In the sequel we assume that the vector
field v, defined on 1~’, is extended to a neighbourhood of T, as a Ck-1
vector field. The results do not depend on the particular extension of v.

For convenience, we work here in the interval I = [0, Set
J = [0, -r], z &#x3E; 0, and define the convex set

The values of the positive constants z, A, B will be fixed later on.
K is a closed, convex, bounded subset of the Banach space C(J; -Wk-1).
In fact, if wn e K, wn - w as n - + oo, it follows, by the weak*-
compactness of the bounded subsets of .L°°(J; Wk) and by the lower
semi-continuity of the norm respect to the weak* -convergence, that
WE LOO(J; Wk) and that 4A.

Now we define a map ~’ on K as follows. Let v E K and let n be
the solution of the problem

for each t E J. Note that 

in Q, and that on .h. Since
div v = 0 in ,S~ and = 0 on F, the compatibility condition
for the Neumann boundary value problem (6.2) is verified, and the
solution ~z exists and is determined up to an additive constant. How-

ever, we are interested only on ~~.
Theorem 2.2* guarantees the existence and the uniqueness of a

solution u of the evolution problem

We set ~’v = u, b’v E .K. By applying well known regularity re-
sults to the elliptic boundary value problem (6.2), one gets
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We recall that the symbol c may denote different positive constants, y
even in the same equation. From ( 2 .81 ) it follows that

On the other hand, from (6.31) and from the above estimates, it

follows in particular that

Hence

Now we will use the Helmholtz decomposition of EP, namely
Lp== Gj). We refer to [13], for definition and results. A similar
argument (in .L2 spaces) is used in reference [17], in order to study the
system (6.1). We denote by P and by Q = I - P the projections
associated with the above decomposition of LP. It is well known that
the restrictions of P and Q to Wl are continuous from Wi into 
Z &#x3E; 0. In particular, the norm of the linear map P is bounded in Wk
and in Wk-1 by a constant ’‘c c(Q n, p, k). Hence, from (6.4), it

follows that 
’

where, by definition, = P(u(t)), Vt c J. We fix A = 
+ and we assume that 7: verify the conditions

It readily follows that  4A, ’BIv E K. On the other hand,
since since and since 
one easily verifies (by using (6.5)) that c3 A, for a suitable
constant By defining B = one has T(K) c K where, by de-
finition, T = PS.

Let us show that T is a strict contraction, respect to the C(J; 
norm. u’ = s(v’ ) , and denote by (6.2’) and (6.3’) the
equations (6.2) and (6.3) replaced by v’, n, ~’, respectively.
From the equations (6.3) and (6.3’), and from (2.9), we deduce that
11 U’ - 
On the other hand, by subtracting the respective sides of equations



271

(6.2) and (6.2’), one easily verifies that

Hence,

Consequently, if

Let v = Pu = PSv be the fixed point of T. If we prove that
Pu == u, then v = u, and equation (6.3) shows that u is a solution of
the Euler equations (6.1). Let us show that Qu(t) = u(t), ’BIt e J. Since

Qw = 0 means that div w = 0 in S~, and that W.’V = 0 on F, equation
(6.2) shows that + Vn- f ) = 0, dt E J. Hence, by applying
the operator Q to both sides of equation (6.31), and by recalling that
u = v -~- Qu, it readily follows that 0, ‘d t E J. By
multiplying both sides scalarly in L2 by Qu, one 
a.e. in J. Since Qu(O) = Quo = 0, it follows that Qu(t) = 0, Vt E J.
Hence Pu == u.

Finally, we remark that the conditions imposed on í in the above
proof, namely (6.6) and (6.7), follow from the assumption on the
value of T made in theorem 6.1.
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