Cohen-Macaulay and Gorenstein finitely graded rings
Rendiconti del Seminario Matematico della Università di Padova, Tome 79 (1988), pp. 123-152.
@article{RSMUP_1988__79__123_0,
     author = {Menini, Claudia},
     title = {Cohen-Macaulay and {Gorenstein} finitely graded rings},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {123--152},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {79},
     year = {1988},
     mrnumber = {964026},
     zbl = {0655.13025},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_1988__79__123_0/}
}
TY  - JOUR
AU  - Menini, Claudia
TI  - Cohen-Macaulay and Gorenstein finitely graded rings
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1988
SP  - 123
EP  - 152
VL  - 79
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_1988__79__123_0/
LA  - en
ID  - RSMUP_1988__79__123_0
ER  - 
%0 Journal Article
%A Menini, Claudia
%T Cohen-Macaulay and Gorenstein finitely graded rings
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1988
%P 123-152
%V 79
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_1988__79__123_0/
%G en
%F RSMUP_1988__79__123_0
Menini, Claudia. Cohen-Macaulay and Gorenstein finitely graded rings. Rendiconti del Seminario Matematico della Università di Padova, Tome 79 (1988), pp. 123-152. http://www.numdam.org/item/RSMUP_1988__79__123_0/

[AM] M.F. Atiyah - I.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, London, 1969. | MR | Zbl

[B] H. Bass, On the ubiquity of Gorenstein rings, Math. Zeitschr., 82 (1963) pp. 8-28. | MR | Zbl

[BG] M. Boratynski - S. Greco, When does an ideal arise from the Ferrand construction?, Rapporto interno del Dipartimento di Matematica del Politecnico di Torino N. 2, (1985).

[F1] D. Ferrand, Courbes gauches et fibrés de rang 2, C.R. Acad. Sci. Paris, 281 (1975), pp. 345-347. | MR | Zbl

[F2] R. Fossum, Commutative extensions by canonical modules are Gorenstein rings, PAMS, 40 (1973), pp. 395-400. | MR | Zbl

[FGR] R.M. Fossum - P.A. Griffith - I. Reiten, Trivial Extensions of Abelian Categories, LNM 456, Springer-Verlag, Berlin-Heidelberg-New York, 1975. | MR | Zbl

[H] R. Hartshorne, Local Cohomology, LNM 41, Springer-Verlag, Berlin-Heidelberg -New York, 1967. | MR

[HK] J. Herzog - E. Kunz, Der Kanonische Modul eines Cohen-Macaulay Rings, LNM 238, Springer-Verlag, Berlin-Heidelberg-New York, 1973. | MR | Zbl

[K] I. Kaplansky, Commutative rings, The University of Chicago Press, Chicago and London, 1974. | MR | Zbl

[M1] E. Matlis, Injective modules over Noetherian rings, Pacific J. Math., 8 (1958), pp. 511-528. | MR | Zbl

[M2] E. Matlis, The Higher Properties of R-Sequences, J. of Algebra, 50 (1978), pp. 77-112. | MR | Zbl

[M 3] H. Matsumura, Commutative Algebra, Benjamin, New York, 1970. | MR | Zbl

[M4] C. Menini, Finitely graded rings, Morita duality and self-injectivity, Comm. in Algebra, 15 (1987), pp. 1357-1364. | MR | Zbl

[N] C Năstăsescu, Strongly graded rings of finite groups, Comm. in Algebra, 11 (1983), pp. 1033-1071. | MR | Zbl

[NV] C Năstăsescu - F. Van Oystaeyen, Graded Ring Theory, North-Holland, Amsterdam-New York-Oxford, 1982. | MR | Zbl

[R] I. Reiten, The converse to a theorem of Sharp on Gorenstein modules, Proc. of A.M.S., 32 (1970), pp. 417-420. | MR | Zbl

[S 1] J.P. Serre, Algebre Locale. Multiplicités, LNM 11, Springer-Verlag, Berlin-Heidelberg- New York, 1965. | MR | Zbl

[S2] R.Y. Sharp, Local Cohomology Theory in Commutative Algebra, Quart. J. Math. Oxford (2), 21 (1970), pp. 425-434. | MR | Zbl

[S3] R.Y. Sharp, Gorenstein Modules, Math. Z., 115 (1970), pp. 117-139. | MR | Zbl