RENDICONTI del Seminario Matematico della Università di Padova

WALTER STREB Some commutativity results for rings

Rendiconti del Seminario Matematico della Università di Padova, tome 79 (1988), p. 109-114

http://www.numdam.org/item?id=RSMUP_1988_79_109_0

© Rendiconti del Seminario Matematico della Università di Padova, 1988, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 79 (1988)

Some Commutativity Results for Rings.

WALTER STREB (*)

SUMMARY - It is proved that certain rings satisfying variable identities of the form $[x^m, y^n, ..., y^n] = 0$ (in particular $[x^m, y^n, y^n] = 0$ with *n* bounded) must have nil commutator ideals.

In this paper we prove results based on questions of Herstein [2, p. 357] and generalizing results of Klein, Nada and Bell [3] and Klein and Nada [4].

Let R be an associative ring and Z respectively \mathbb{Z}^+ be the set of integers respectively positive integers. For $a, b \in R$ define generalized commutators $[a, b]_k, k \in \mathbb{Z}^+$, as follows: $[a, b]_1 = [a, b] = ab - ba$ and for $i \in \mathbb{Z}^+$, $[a, b]_{i+1} = [[a, b]_i, b]$. R is called a k-ring if for all a, $b \in R$ there exists $m = m(a, b), n = n(a, b) \in \mathbb{Z}^+$ such that $[a^m, b^n]_k = 0$. R is called a n-bounded k-ring if the above n is fixed. Let $\mathbb{Z}\{X\}$ be the free Z-algebra generated by the noncommuting indeterminates x_1, x_2, x_3, \dots [5; pp. 2-4]. Substitute $r_i \in R$ for x_i in $f \in \mathbb{Z}\{X\}$ to get an element of R. The additive subgroup of R generated by all these elements is denoted by f(R). Let $f \in \mathbb{Z}\{X\}$, and $N \in \mathbb{Z}^+$. R is called a N-f-k-ring if for all $a \in f(R)$ and $b \in R$ there exists m = m(a, b), $n = n(a, b) \in \mathbb{Z}^+$ such that m < N and $[a^m, b^n]_k = 0$. R is called left (right)-s-unital if $a \in Ra$ $(a \in aR)$ for all $a \in R$.

Let R_{reg} be the set of (left and right) regular elements of R, R_{nil} the set of nilpotent elements of R, R' the commutator ideal of R, C(R) the center of R and $i \wedge j$ the greatest common divisor of $i, j \in \mathbb{Z}^+$.

(*) Indirizzo dell'A.: Fachbereich 6, Mathematik, Universität Essen GHS, Universitätsstr. 2, 4300 Essen 1, BRD.

For $a \in R$ and $A, B \subseteq R$ let $C_R(a) = \{b \in R : ba = ab\}$ and [A, B] be the additive subgroup of R generated by $\{[a, b] : a \in A, b \in B\}$. We shall prove:

THEOREM. Each of the following conditions implies $R' \subseteq R_{nil}$:

(1) R is a 2-ring and a *n*-bounded *k*-ring (in particular, R is a *n*-bounded 2-ring).

- (2) R is a N-f-2-ring and a k-ring.
- (3) R is a 2-ring and a N-f-4-ring.
- (4) R is a left-or right-s-unital k-ring.

This results generalize the following sufficient conditions: For all $a, b \in R$ there exists $m = m(a, b) \in \mathbb{Z}^+$ such that $[a^m, b]_2 = 0$ [4; Theorem, p. 361]. Let $N \in \mathbb{Z}^+$. For all $a, b \in R$ there exists m = m(a, b), $n = n(a, b) \in \mathbb{Z}^+$ such that m < N and $[a^m, b^n]_2 = 0$ [3; Theorem 1, p. 286]. R is a k-ring with $1 \in R$ [3; Theorem 3, p. 288]. We first prove:

LEMMA. Let R be prime, torsionfree, $R = R_{reg} \cup R_{nil}$ and C(R) = 0.

(a) Let $0 \neq f \in \mathbb{Z}{X}$. Then there exists an ideal $I \neq 0$ of R such that $[I, R] \subseteq f(R)$.

(b) Let $L \neq 0$ be a Lie ideal of R and $N \in \mathbb{Z}^+$. For all $a \in R$ and $b \in R_{\text{reg}}$ suppose there exists m = m(a, b), $n = n(a, b) \in \mathbb{Z}^+$ such that $m \leq N$ and $[a^m, b^n]_k = 0$. Then $c^2 = 0$ for all $c \in C_R(b) \cap R_{\text{nil}}$ and $b \in R_{\text{reg}}$ if k = 4 and $C_R(b) \cap R_{\text{nil}} = 0$ for all $b \in R_{\text{reg}}$ if k = 2.

(c) Let R be a n-bounded k-ring. Then $C_R(b^i) \subseteq C_R(b^n)$ for all $b \in R_{reg}$ and $i \in \mathbb{Z}^+$.

PROOF. (a) Using [5; pp. 6, 7] we get a multilinear polynomial $0 \neq g \in \mathbb{Z}{X}$ such that $g(R) \subseteq f(R)$. Since $g(R) \neq 0$ [5; Theorem 1.6.27, p. 47] and $[g(R), R] \subseteq g(R)$ the conclusion follows by [1; Theorem 6, p. 570].

(b) Let k = 4. Assume that there exists $b \in R_{reg}$, $c \in C_R(b)$ and $2 < l \in \mathbb{Z}^+$ such that $c^{i+1} = 0 \neq c^i$. We shall get a contradiction. For each $a \in L$ and $M \in \mathbb{Z}^+$ there exists a subset \mathcal{M} of \mathbb{Z}^+ with Melements and $m, n \in \mathbb{Z}^+$ with m < N such that $[a^m, (b + ic)^n]_4 = 0$ for all $i \in \mathcal{M}$. Using $c^{i+1} = 0$ and a Vandermonde argument analogous to [3; p. 287] we get homogeneous equations $g_i(a, b, c) = 0$, where a, b and c appear in each formal monomial exactly m, 4n - j and j-times. We use tacitly $b \in R_{reg}$ and $c^{i+1} = 0$.

110

Since

$$0 = g_1(a, b, c)c^i = 4\binom{n}{1} [[a^m, b^n]_3, b^{n-1}c]c^i = 4nb^{n-1}c[a^m, b^n]_3c^i$$

we have $c^{i}[a^{m}, b^{n}]_{3}c^{i} = 0$ and $c^{i-1}g_{2}(a, b, c)c^{i-1} = 0$, hence

$$0 = 4 \binom{n}{2} c^{l-1} [[a^m, b^n]_3, b^{n-2}c^2] c^{l-1} + + 6 \binom{n}{1} \binom{n}{1} c^{l-1} [[a^m, b^n]_2, b^{n-1}c]_2 c^{l-1} = -12n^2 b^{n-1}c^l [a^m, b^n]_2 c^l b^{n-1},$$

therefore

$$c^{i}[a^{m}, b^{n}]_{2}c^{i} = 0$$
 and $c^{i-2}g_{3}(a, b, c)c^{i-1} = 0$.

Analogously we get

$$c^{i}[a^{m}, b^{n}]c^{i} = 0$$
 and $c^{i-2}g_{4}(a, b, c)c^{i-2} = 0$

and finally $c^i a^m c^i = 0$.

Choose m(a) in \mathbb{Z}^+ maximal with respect to $c^i a^{m(a)} c^i = 0$. Put $M = \max \{m(a): a \in L\}$. Choose $d \in L$ such that m(d) = M. For each $a \in L$ there exists $M \ge m \in \mathbb{Z}^+$ such that $c^i(ia + d)^m c^i = 0$ for infinitely many $i \in \mathbb{Z}^+$. Using a Vandermonde argument we get $c^i a^m c^i = 0 = c^i d^m c^i$, hence m = M. We have proved that $c^i a^M c^i = 0$ for all $a \in L$. There exists an ideal $I \neq 0$ of R such that $[I, I] \subseteq L$ [1; Theorem 6, p. 570]. Using (a) for R = I and $f = [x_1, x_2]^M$ we get an ideal $J \neq 0$ of I such that $[J, J] \subseteq f(I)$. Then $K = IJI \neq 0$ is an ideal of R and $0 = c^i[K, cK]c^i = c^iKcKc^i$, hence $c^i = 0$, a contradiction.

Let k = 2. The condition for k = 4 is still satisfied, hence $c^2 = 0$ for all $b \in R_{\text{reg}}$ and $c \in C_R(b) \cap R_{\text{nil}}$. As above we get c = 0 using $0 = g_2(a, b, c) = 2n^2 b^{n-1} ca^m cb^{n-1}$.

(c) Let $b \in R_{reg}$, $i, j \in \mathbb{Z}^+$ und $l = i \wedge n$. We show (i)-(iv) step by step.

(i)
$$C_R(b^i) \cap C_R(b^j) \subseteq C_R(b^{i\wedge j})$$
.

We can assume that i < j. For $a \in C_R(b^i) \cap C_R(b^j)$ we have

$$0 = [a, b^{i}] = [a, b^{i}]b^{j-i} + b^{i}[a, b^{j-i}] = b^{i}[a, b^{j-i}],$$

hence $[a, b^i] = 0 = [a, b^{j-i}]$. By induction over i + j we get the conclusion.

(ii) Let $a \in C_R(b^i)$ and $a^2 = 0$. Then $a \in C_R(b^i)$.

Let $m \in \mathbb{Z}^+$ be such that $0 = [(a + b^i)^m, b^n]_k = mb^{i(m-1)} [a, b^n]_k$. Then $[a, b^n]_k = 0$. For $c = [a, b^n]_{k-1}$ we have $[c, b^n] = 0 = [c, b^i]$, hence $[c, b^i] = 0$ by (i). For $c = [a, b^i]$ we have $[c, b^n]_{k-1} = 0 = [c, b^i]$, hence $[a, b^i]_k = 0$ by induction over k. For $c = [a, b^i]_{k-2}$ and j = i/l we have $0 = [c, b^i] = jb^{i-l}[c, b^i]$, hence $[a, b^i]_{k-1} = 0$, therefore $a \in C_R(b^i)$ by induction over k.

By induction over the index of nilpotence of a we get

- (iii) Let $a \in C_R(b^i) \cap R_{nil}$. Then $a \in C_R(b^i)$.
- (iv) $C_R(b^i) \subseteq C_R(b^i) \subseteq C_R(b^n)$.

If $C_R(b^i) \subseteq R_{\text{reg}}$, then $C_R(b^i)$ is commutative by [3; Lemma, p. 286], hence (iv). Otherwise let $a \in C_R(b^i)$, $a^2 = 0$ and $c \in C_R(b^i) \cap R_{\text{reg}}$. Then $ac \in C_R(b^i) \cap R_{\text{nil}}$, hence $0 = [ac, b^i] = a[c, b^i]$ by (iii), therefore $[c, b^i] \in C_R(b^i) \cap R_{\text{nil}}$, hence $[c, b^i]_2 = 0$ by (iii), finally $c \in C_R(b^i)$ as above.

PROOF OF THEOREM. (1)-(3) Let us assume that $R' \notin R_{\rm nil}$. We shall get a contradiction. By [2] we can assume, that R is prime, torsionfree, $R = R_{\rm reg} \cup R_{\rm nil}$, C(R) = 0, R is a k-ring but not a k-1-ring and k > 1.

(1) We show (i)-(iii) step by step.

(i) Let $a \in R$, $b \in R_{reg}$ and m, $i \in \mathbb{Z}^+$. Then $[a^m, b^i]_2 = 0$ implies $[a^m, b^n]_2 = 0$.

By (c) we have $0 = [[a^m, b^i], b^n] = [[a^m, b^n], b^i]$, hence $[a^m, b^n]_2 = 0$.

(ii) For $a \ b \in R_{reg}$ there exists $m = m(a, b) \in \mathbb{Z}^+$ such that n|m and $[a^i, b^j]_2 = [b^j, a^i]_2 = [a^i, b^j]^2 = 0$ for all $i, j \in m\mathbb{Z}^+$.

By (i) there exists $r, s \in \mathbb{Z}^+$ such that $[a^{nr}, b^n]_2 = 0 = [b^{ns}, a^n]_2$. For $u = a^{nr}$ and $v = b^{ns}$ we have $[u, v]_2 = 0 = [v, u]_2$. By (i) there exists $1 < t \in \mathbb{Z}^+$ such that $0 = [u^t, b^n]_2$. Hence $0 = [u^t, v]_2 = t(t - 1)u^{t-2}[u, v]^2$, therefore $[u, v]^2 = 0$. We have $[u^i, v^j]_2 = [v^j, u^i]_2 = [u^i, v^j]^2 = 0$ for all $i, j \in \mathbb{Z}^+$. Using m = nrs we get (ii).

(iii) Let
$$a, b \in R_{reg}, c \in C_R(a)$$
 and $c^2 = 0$. Then $[c, b^n]_3 = 0$.

Let m = m(a, b) as in (ii). By (i) there exists $1 < l \in \mathbb{Z}^+$ such that $[(a^m + c)^l, b^m]_2 = 0$. Analogous to [2; p. 355] we get (iii).

By an argument as in [2; pp. 355, 356] we get a Lie ideal $L \neq 0$ of R such that $[a, b^n]_3 = 0$ for all $a \in L$ and $b \in R_{reg}$. By (b) we have $c^2 = 0$ for all $b \in R_{reg}$ and $c \in C_R(b) \cap R_{nil}$. We conclude the proof as in [4; p. 361].

(2) Since R is not a k-1-ring there exists $a, b \in R$ such that $[a^i, b^j]_{k-1} \neq 0$ for all $i, j \in \mathbb{Z}^+$. There exists $m, n, 1 < l \in \mathbb{Z}^+$ such that $[a^m, b^n]_k = 0 = [a^{ml}, b^n]_k$. Using the formula [uv, w] = [u, w]v + u[v, w] we get $0 = [a^{ml}, b^n]_{(k-1)l} = [a^m, b^n]_{k-1}^l$. Hence there exists $b \in R_{\text{reg}}$ and $c \in C_R(b)$ such that $c \neq 0 = c^2$ in contradiction to (a) and (b).

(3) We have $c^2 = 0$ for all $b \in R_{reg}$ and $c \in C_R(b) \cap R_{nil}$ by (a) and (b) and can conclude the proof as in [4; p. 361].

(4) Let R be left-s-unital. Assume that $R' \notin R_{nil}$. Choose a finite subset A of R and $e \in R$ such that $S' \notin S_{nil}$ for the subring S of R generated by A and ea = a for all $a \in A$ [6]. Let T be the subring of R generated by $A \cup \{e\}$ and I the ideal of T generated by $\{ae - a: a \in A \cup \{e\}\}$. Since IA = 0 T/I has no nil commutator ideal. But T/I ist a k-ring with 1 in contradiction to [2; Theorem 3, p. 288].

REMARK. For $a, b \in \mathbb{R}$ define $a \circ b = ab + ba$. Let $a, b \in \mathbb{R}, m$, $n_i \in \mathbb{Z}^+$ and $[*_i \in \{[,], \circ\}$ such that $(((a^m *_1 b^{n_1}) *_2 b^{n_2}) \dots) *_k b^{n_k} = 0$. Then using the formula $[u, v^2] = [u, v] \circ v = [u \circ v, v]$ we get $[a^m, b^n]_k = 0$ for $n = 2\Pi n_i$. Thus the use of \circ as well as [,] provides no real generalisation.

REFERENCES

- I. N. HERSTEIN, On the Lie structure of an associative ring, J. Algebra, 14 (1970), pp. 561-571.
- [2] I. N. HERSTEIN, On rings with a particular variable identity, J. Algebra, 62 (1980), pp. 345-357.
- [3] A. A. KLEIN I. NADA H. E. BELL, Some commutativity results for rings, Bull. Austral. Math. Soc., 22 (1980), pp. 285-289.
- [4] A. A. KLEIN I. NADA, A commutativity result for rings, Bull. Austral. Math. Soc., 33 (1986), pp. 359-362.

Walter Streb

- [5] L. H. ROWEN, Polynomial Identities in Ring Theory, Academic Press, New York (1980).
- [6] H. TOMINAGA, On s-unital rings, Math. J. Okayama Univ., 18 (1976), pp. 117-134.

Manoscritto pervenuto in redazione il 13 marzo 1987.

114

.