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REND. SEM. MaT. UN1v. PaDOVA, Vol. 79 (1988)

Some Commutativity Results for Rings.

WALTER STREB (*)

SuMMARY - It is proved that certain rings satisfying variable identities of the
form [x™, y", ...,y"] = 0 (in particular [z™, y», y*] = 0 with n bounded)
must have nil commutator ideals.

In this paper we prove results based on questions of Herstein [2,
p. 357] and generalizing results of Klein, Nada and Bell [3] and Klein
and Nada [4].

Let R be an associative ring and Z respectively Z™ be the set of
integers respectively positive integers. For a, b € B define generalized
commutators [a,b],, keZ", as follows: [a,b], = [a,b] = ab— ba
and for ¢ € Z*, [a, bl;1, = [[a, b];, b]. R is called a k-ring if for all a,
b € R there exists m = m(a, b), n = n(a, b) € Z* such that [a™, b"], = 0.
R is called a n-bounded k-ring if the above = is fixed. Let Z{X} be
the free Z-algebra generated by the noncommuting indeterminates
®yy Ty, T3, ... [D; PP. 2-4]. Substitute r,€ R for z, in feZ{X} to get
an element of B. The additive subgroup of R generated by all these
elements is denoted by f(R). Let feZ{X}, and N eZ*. R is called
a N-f-k-ring if for all a € f(R) and be R there exists m = m(a,b),
n = n(a, b) € Z* such that m<N and [a™, b*], = 0. R is called left
(right)-s-unital if ¢ € Ra (a € aR) for all a € R.

Let R, be the set of (left and right) regular elements of R, R,
the set of nilpotent elements of R, R’ the commutator ideal of R,
O(R) the center of R and ¢Aj the greatest common diviser of 4, j € Z*.

(*) Indirizzo dell’A.: Fachbereich 6, Mathematik, Universitat Essen GHS,
Universitiatsstr. 2, 4300 Essen 1, BRD.
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For ac R and A, BCR let Cyla) = {be R: ba = ab} and [4, B] be
the additive subgroup of R generated by {[a,bl:acA,beB}. We
shall prove:

THEOREM. Each of the following conditions implies R'C R,

(1) R is a 2-ring and a n-bounded k-ring (in particular, R is a
n-bounded 2-ring).

(2) R is a N-f-2-ring and a k-ring.
(3) R is a 2-ring and a N-f-4-ring.
(4) R is a left-or right-s-unital k-ring.

This results generalize the following sufficient conditions: For all
a, b € R there exists m = m(a, b) € Z* such that [a™, b], = 0 [4; The-
orem, p. 361]. Let N e€Z*. For all a, b € R there exists m = m(a, b),
n = n(a, b) €eZ* such that m<N and [a™, b"], = 0 [3; Theorem 1,
p. 286]. Risa k-ring with 1 € R [3; Theorem 3, p. 288]. We first prove:

LeMMA. Let R be prime, torsionfree, B = R, U R, and C(R) = 0.

(a) Let 05~ feZ{X}. Then there exists an ideal I#0 of R
such that [I, RB]C f(R).

(b) Let L5~ 0 be a Lie ideal of B and N eZ*. For all ac R
and be R, suppose there exists m = m(a,b), n = n(a,b) € Z* such
that m<N and [a™, b"], = 0. Then ¢ =0 for all ce Cn(b)N R,
and be Ry, if k=4 and Ch(b)N Ry =0 for all be Ry, if k= 2.

(¢) Let R be a m-bounded k-ring. Then Cr(b?) C Cg(b®) for all
beR,, and i€ Z".

ProoOF. (a) Using [6; pp. 6, 7] we get a multilinear polynomial
05« g € Z{X} such that g(R) C f(R). Since g(R)# 0 [5; Theorem 1.6.27,
p. 47] and [g(R), R] < g(R) the conclusion follows by [1; Theorem 6,
p. 570].

(b) Let k=4. Assume that there exists b€ R,,, c¢€ Cg(b)
and 2<leZ* such that ¢\ = 054 ¢. We shall get a contradiction.
For each aec L and M eZ* there exists a subset M of Zt with M
elements and m, neZt with m<XN such that [am, (b + ic)"], =0
for all ¢ € Mo. Using ¢! = 0 and a Vandermonde argument analogous
to [3; p. 287] we get homogeneous equations g,(a,b,c) = 0, where
@, b and ¢ appear in each formal monomial exactly m, 4n — j and
j-times. We use tacitly b € R, and ¢'*1 = 0.
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Since

0 = gi(a, b, 0)o' = 4 (;”) [[am, b7],, br1c] et = dnbm—1c[am, br]yo!
we have ¢'[a™, b"],6'= 0 and ¢'~1g,(a, b, ¢)¢"1= 0, hence

0=4 (;) cl-—l[[a,m, b”]a, bn——zcz]cl-—l 4

+o (?) (Wf) ¢t [[am, b,, b clyeit = — 12ntbr-ieiam, brl,etbnt

therefore

clla™, brl,et=0 and ¢ 2gy(a,b,c)ct =0,
Analogously we get
c'[a™, b*]¢t=0 and c¢"2%g,(a,b,c)ct2=0

and finally c¢ta™c¢'=0.

Choose m(a) in ZT maximal with respect to clam@¢'=0. Put
M = max {m(a): a € L}. Choose d € L such that m(d) = M. For each
a € L there exists M >m € Z* such that ¢'(ia -+ d)™¢' = 0 for infinitely
many i€Z*. Using a Vandermonde argument we get clam¢'= 0 =
=cldmc!, hence m = M. We have proved that c'a™c¢'=0 for all
a€ L. There exists an ideal I =0 of R such that [, I1C L [1; The-
orem 6, p. 570]. Using (a) for R = I and f = [x,, #,]” we get an ideal
J 0 of I such that [J,J]Cf(I). Then K = IJI=~0 is an ideal
of R and 0 = ¢'[K, ¢cK]c'= ¢*KeKe', hence ¢! = 0, a contradiction.

Let ¥ = 2. The condition for ¥ = 4 is still satisfied, hence ¢z = 0
for all be KB, and ce Cx(b)N R,,. As above we get ¢ = 0 using
0 = g,(a, b, ¢) = 2n2b"1ca™chr1.

(¢) Let b€ Ryegy %y j€Z™ und I = iAn. We show (i)-(iv) step
by step.

(i) Ca(d®) N Ca(b?) C CR(bM).

We can assume that ¢ << j. For a € Cx(b?) N Cx(b?) we have

0 = [a, '] = [a, b*]b*~* + b[a, bi~*] = bi[a, b*~],
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hence [a,d] = 0 = [a,b'~*]. By induction over i |+ j we get the
conclusion.

(ii) Let a e Cx(b?) and a2 = 0. Then a e Ox(b?).

Let meZ* be such that 0 = [(a 4 b%)™, b»], = mbi™-D [a, b*],.
Then [a,b"], =0. For ¢ = [a,b"],, we have [¢, b"] =0 = [¢, b?],
hence [¢,b]=0 by (i). For ¢ = [a,b] we have [¢,b"];—, =0 =
= [¢, b?], hence [a,b'], = 0 by induction over k. For ¢ = [a, b'];—,
and j =14/l we have 0= [¢, b’] = jb*~[¢,b'], hence [a,bd'];—, =0,
therefore a € Cx(b') by induction over k.

By induction over the index of nilpotence of a we get

(iii) Let a € Cx(b?) N RBy. Then ae Cx(bY).
(iv) Ca(b?) S Cx(B?) C Cp(bm).

If Cx(b?) C R, then Ox(b?) is commutative by [3; Lemma, p. 286],
hence (iv). Otherwise let @€ Cr(bi), a® =0 and ce€ Cg(d’) N R
Then ac € Cr(b’) N R,;, hence 0 = [ac, b*] = a[c, b*] by (iii), therefore
[¢, b'] € Cr(b') N Ry, hence [¢,b'], = 0 by (iii), finally c¢e Cx(b?) as
above.

Proor oF THEOREM. (1)-(3) Let us assume that R'¢ R,;. We
shall get a contradiction. By [2] we can assume, that R is prime,
torsionfree, R = R, U R, C(R) = 0, R is a k-ring but not a k-1-ring
and k> 1.

(1) We show (i)-(iii) step by step.
(i) Let aeR, be R,, and m, ¢€Z". Then [am b'],=0
implies [a™, b"],= 0.
By (¢) we have 0 = [[a™, b‘], b*] = [[a™, b"], b'], hence [a™, b"], = 0.
(ii) For @ be R,, there exists m = m(a,b)€Z* such that
n|m and [af, b'], = [b, a’], = [a%, b7]2 = O for all ¢, j € mZ™.

By (i) there exists r, s€Z"™ such that [a*, b"], = 0 = [b", a*],.
For v = a* and v = b™ we have [u,v], = 0 = [v,%],. By (i) there
exists 1 <teZ" such that 0 = [u?, b*],. Hence 0 = [uf, v], = ¢(t —
— 1)u*"*[u, v]?, therefore [u,v]* = 0. We have [uf, v/], = [v}, u’], =
= [u?, v]2=0 for all 4, j € Z". Using m = nrs we get (ii).

(iii) Let a, be R, c€ Ox(a) and ¢ = 0. Then [c, b"]; = 0.
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Let m = m(a, b) as in (ii). By (i) there exists 1 <leZ' such
that [(a™ + e¢)?, b™], = 0. Analogous to [2; p. 355] we get (iii).

By an argument as in [2; pp. 355, 356] we get a Lie ideal L0
of R such that [a, b"]; = 0 for all e L and be R,,. By (b) we have
c2=0 for all be B, and ce Cg(b)N R;. We conclude the proof
as in [4; p. 361].

(2) Sinee R is not a k-1-ring there exists a, be R such that
[a%, bi],_y 7= O for all 4, j € Z*. There exists m, n, 1 <le€Z" such that
[am, b"];, = 0 = [a™*, b"],. TUsing the formula [uv,w] = [u,wjv+
+ u[v, w] we get 0 = [a™!, b*]y—y: = [a™, b"].—,. Hence there exists
be R, and ce Ox(b) such that ¢ 0 = ¢? in contradiction to (a)
and (b).

(3) We have ¢2 =0 for all be R, and ce Cx(b) N R, by (a)
and (b) and can conclude the proof as in [4; p. 361].

(4) Let R be left-s-unital. Assume that R’'¢ R,. Choose a
finite subset A of R and e € R such that 8’ ¢ 8y, for the subring 8 of R
generated by 4 and ea = a for all a€ A [6]. Let T be the subring
of R generated by A U {¢} and I the ideal of T generated by {ae —a:
a€ AU {¢}}. Since I4 =0 T/I has no nil commutator ideal. But
T|I ist a k-ring with 1 in contradiction to [2; Theorem 3, p. 288].

REMARK. For a, be R define aob = ab 4- ba. Let a, be R, m,
n,€Z" and *;€{[,], o} such that (((am #; ™) %, o) ) %, be = 0.
Then using the formula [u, v?] = [u, v]ov = [uov, v] We get [a™, b*], = 0
for n = 2IIn;. Thus the use of o as well as [, ] provides no real gen-
eralisation.
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