@article{RSMUP_1987__77__317_0, author = {Miric\u{a}, \c{S}tefan}, title = {Generalized solutions by {Cauchy's} method of characteristics}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {317--350}, publisher = {Seminario Matematico of the University of Padua}, volume = {77}, year = {1987}, mrnumber = {904627}, zbl = {0627.49015}, language = {en}, url = {http://www.numdam.org/item/RSMUP_1987__77__317_0/} }
TY - JOUR AU - Mirică, Ştefan TI - Generalized solutions by Cauchy's method of characteristics JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1987 SP - 317 EP - 350 VL - 77 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_1987__77__317_0/ LA - en ID - RSMUP_1987__77__317_0 ER -
%0 Journal Article %A Mirică, Ştefan %T Generalized solutions by Cauchy's method of characteristics %J Rendiconti del Seminario Matematico della Università di Padova %D 1987 %P 317-350 %V 77 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_1987__77__317_0/ %G en %F RSMUP_1987__77__317_0
Mirică, Ştefan. Generalized solutions by Cauchy's method of characteristics. Rendiconti del Seminario Matematico della Università di Padova, Tome 77 (1987), pp. 317-350. http://www.numdam.org/item/RSMUP_1987__77__317_0/
[1] J. ROBBIN, Transversal Mappings and Flows, Benjamin, New York, 1967. | MR | Zbl
-[2] The Hamilton-Jacobi equation. A global approach, Academic Press, New York, 1977. | MR | Zbl
jr.,[3] Mathematical Methods of Optimal Control, Holt, Rinehart & Winston, New York, 1971. | MR | Zbl
,[4] Existence of regular synthesis for general control problems, J. Differential Equations, 38 (1980), pp. 317-343. | MR | Zbl
,[5] Optimization. Theory and Applications, Springer, New York, 1983. | MR | Zbl
,[6] Optimal control and the true hamiltonian, SIAM Review, 21 (1979), pp. 157-166. | MR | Zbl
,[7] Methods of Mathematical Physics, vol. II, Wiley, New York, 1962. | MR | Zbl
- ,[8] Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. A.M.S., 282, 2 (1984), pp. 487-502. | MR | Zbl
- - ,[9] On the Cauchy problem for Bellman equation of dynamic programming, Z. Vyc. Mat. i Mat. Phys., 9 (1969), pp. 426-432 (Russian). | MR | Zbl
,[10] The Cauchy problem for a nonlinear first order partial differential equation, J. Differential Equations, 5 (1969), pp . 515-530. | MR | Zbl
,[11] Differential Equations, Ed. Did. Pedagogică, Bucuresti, 1972 (Romanian). | MR
,[12] Ordinary Differential Equations, Wiley, New York, 1964. | MR | Zbl
,[13] Differential Games, Wiley, New York, 1965. | MR | Zbl
,[14] Introduction to Differentiable Manifolds, Interscience, New York, 1962. | MR | Zbl
,[15] Generalized Solutions of Hamilton-Jacobi Equations, Pitman, Boston, 1982. | MR | Zbl
,[16] Stratifications and Mappings, Preprint, Harvard University (Russian transl.: Uspehi Mat. Nauk, 27 (1972), pp. 85-118). | MR | Zbl
,[17] The contingent and the paratingent as generalized derivatives for vector-valued and set-valued mappings, Nonlinear Analysis. Theory, Theory & Appl., 6 (1982), pp. 1335-1368. | MR | Zbl
,[18] Stratified Hamiltonians and the optimal feedback control, Ann. Mat. Pura Appl., 33 (1983), pp. 51-78. | MR | Zbl
,[19] Stratified Hamilton-Jacobi equations and applications, Anal. Univ. Bucureşti, Seria Mat., 33 (1984), pp. 59-68. | MR | Zbl
,[20] Dynamic programming method for stratified optimal control problems, Preprint Series in Mathematics, No. 12/1984, Increst-Inst. Inst. Mat., Bucureşti, 1984.
,[21] Sufficiency theorem for discontinuous optimal cost surfaces, SIAM J. Control Opt., 16 (1978), pp. 63-82. | MR | Zbl
,[22] Analytic stratifications and control theory, « Proc. Int. Congress of Math. » (Helsinki, 1978), pp. 865-871. | MR | Zbl
,[23] Subanalytic sets in the Calculus of Variations, Acta Math., 146 (1981), pp. 167-199. | MR | Zbl
,[24] Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc., 75 (1969), pp. 24-284. | MR | Zbl
,[25] Tangents to an analytic variety, Ann. of Math., 81 (1965), pp. 496-549. | MR | Zbl
,