@article{RSMUP_1987__77__1_0, author = {Pilipovi\'c, S.}, title = {Hilbert transformation of {Beurling} ultradistributions}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {1--13}, publisher = {Seminario Matematico of the University of Padua}, volume = {77}, year = {1987}, mrnumber = {904609}, zbl = {0636.46043}, language = {en}, url = {http://www.numdam.org/item/RSMUP_1987__77__1_0/} }
TY - JOUR AU - Pilipović, S. TI - Hilbert transformation of Beurling ultradistributions JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1987 SP - 1 EP - 13 VL - 77 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_1987__77__1_0/ LA - en ID - RSMUP_1987__77__1_0 ER -
%0 Journal Article %A Pilipović, S. %T Hilbert transformation of Beurling ultradistributions %J Rendiconti del Seminario Matematico della Università di Padova %D 1987 %P 1-13 %V 77 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_1987__77__1_0/ %G en %F RSMUP_1987__77__1_0
Pilipović, S. Hilbert transformation of Beurling ultradistributions. Rendiconti del Seminario Matematico della Università di Padova, Tome 77 (1987), pp. 1-13. http://www.numdam.org/item/RSMUP_1987__77__1_0/
[1] J. WLOKA, Einführung in die Theorie der lokalkonvexen Räume, Lect. Not. Math., Berlin, Heidelberg, New York, Springer, 1968. | MR | Zbl
-[2] Ultradistributions. - I: Structure Theorems and a Characterization, J. Fac. Sci. Univ. Tokyo, Sec. IA 20 (1973), pp. 25-105. | MR | Zbl
,[3] Topolovical Vector Spaces I, Berlin, Heidelberg, New York, Springer, 1966.
,[4] Analysis on Real and Complex Manifolds, Amsterdam, North-Holland, 1968. | MR | Zbl
,[5] The Hilbert transform of Schwartz distributions, Proc. Amer. Math. Soc., 89 (1983), pp. 86-90. | MR | Zbl
:[6] Hilbert transform of generalized functions and applications, Canad. J. Math., 35 (1983), pp. 478-499. | MR | Zbl
- ,[7] Théorie des distributions, Paris, Hermann, 1966. | MR | Zbl
,[8] Introduction to the theory of Fourier integrals, Oxford, Oxford University Press, 1967. | JFM
,[9] Generalized Functions in Mathematical Physics, Mo-scow, Mir, 1979. | MR | Zbl
,