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Spaces of Urelements.

NORBERT BRUNNER (*)

Dedicated to Professor PRACHAR on his 60-th birthday.

1. Introduction.

We will prove a topological characterization of a class of spaces
which can be constructed from a space of urelemente. Space of this
kindoccur, when independence results on the axiom of choice A C are
derived by applying standard topological procedures to sets whose
existence contradicts the AC. We will consider the problem of their
characterization in the ordered Mostowski model only. There the space
U of urelemente in its order topology is a source of many independence
theorems. Our main result asserts:

In the Mostowski model a Hausdorff space X is a continuous
one-to-one image of a Dedekind-finite subset of U~, if and only if

every infinite set Y C X has an infinite compact subset.
Our notation will follow [6] and [7]. When viewed from outside

the model, the set U of urelemente is Q. But in the model most subsets
of Q are deleted so that U becomes a connected, locally compact dense
and Dedekind-complete linearly ordered space. As is easily seen, every
infinite subset of U contains a closed, nontrivial interval which is

compact. So the above topological condition is satisfied. It was first

introduced by Bankston [1] under the name antianticompact. It is a

hereditary property. We observe that in the presence of A C there
are no antianticompact T2 spaces.

(*) Indirizzo dell’A.: Purdue University, Dept. Math., West Lafayette,
Indiana 47901, USA; after May 1985: Kaiser Franz Ring 22, A-2500 Baden,
Osterreich.
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1.1. LEMMA. If P(co) is well orderable, then every antianticompact
T2 space is Dedekind-finite.

PROOF. Let X be antianticompact, T2 and countable. Then the

topology X is well orderable, too. Therefore we may perform the
usual argument of constructing an infinite discrete subset of X, the-
reby obtaining a contradiction to antianticompactness. Q.E.D.

A similar proof shows, that there are no antidiscrete T2 spaces,
either. A related result is due to J. Tong [9]: AC~’ implies, that there
are no antianticompact Ro spaces with an ascending chain of open sets.

On the other hand, in the Mostowski model (where P(co) is well

orderable) there are many antianticompact T2 spaces (Dedekind-finite,
of course).

1.2 PROPOSITION. If a T2 space X is a continuous one to one
image of a Dedekind-finite subset D of U~ then Y is antianticompact.

PROOF. Since it is easily verified that a continuous one to one

image of an antianticompact space is antianticompact, it suffices to
show that D is antianticompact. Be infinite and in for
some finite e C U (4(e) is the class of all sets which are supported
by e) . It was observed in [3], that there is a one to one mapping
f: I - T in where 7c U is an open interval between points in
J(c). A permutation argument shows, that f is of the form f(u) =
== where fi i is the identity map or f, is a constant 
Hence f induces on I the order topology which is antianticompact.
So T contains an infinite antianticompact subset. Q.E.D.

2. Main result.

It was observed in [3] that the coarsest T2 topology on U which
is supported by q is the order topology Uo . We extend this result
to sets of the form X = orbe x = {px: p E fix e}. If supp (x) denotes
the least support of X and supp xBe = ao  al  ...  an-l’
then there is a mapping which is defined through
f = (a = (i.e. : e supports f ). It is
one to one. This canonical mapping induces a natural topology Xo
on X which is generated by the product topology Uo on Un.

2.1 LEMMA. Be X, Xo and, e as above. If X E d (e) is a T2 topo-
logy on X then Xo c X.
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PROOF. By the foregoing remarks we may assume that X = orb, a,
where is increasing (i.e.: a(i)  a(i + 1)). Hence X is
the set of all increasing functions where Ii is an interval

between two consecutive elements of e. Xo is the subspace topology
which is inherited from Ui. It is generated by the subbase sets

a) = {x E X : x(i -1 )  a  x(i)}, where a E U and (~(20131)
and x(n) define void clauses). If x E 0(i, a), then 0(i, a) = 
From this it follows with a permutation argument, that if 0(i, a) w X
for some i and some a E Ia, then b)° = 0 for all b E orb, a = I;
(for the other values of b it follows from the definition, that 0(i, b) = 0
or 0(i, b) = X). In order to obtain a contradiction, we assume the
latter and observe that 0- n Xe 0 0 whenever 0 eX is nonempty
and - and (boundary operator) are formed with respect to (o U)n
(o II is the order compactification of (U, Uo)). For if 0 is in then
there is a x E 0B U a) : a E f (~(i, a)° = 0) and orbf x (which
is an intersection of at most n sets D(j, a), a E f r1 Ij and; =1:= i) has
boundary points in X0. It follows from compactness that

is nonempty and closed. Since subsets of (oU),, are definable from a
finite subset of U and the ordering relation on U, every nonempty
closed subset of (o ZT ) n has a maximal element in the lexicographic
order. Applied to C this yields a mapping f : X -~ Xe in d (e) such
that f (x) E 0- if x E 0 e X. Since I supp (  n == I supp (x)Be ~, a
standard permutation argument assures that there is a y E .Xe such
that the set is infinite. We choose 3n + 1 elements xi of this
set and get by T2 pairwise disjoint sets Oi, xi E Oi e X. Then yEn O-i.

i

This gives a contradiction (hence all sets 0(i, a) are in X). For if
then for some ~a E ~, _, &#x3E;~ and some ai,

y(i)Riai, A- contains the set {0153 E X- : Vi E n : whence

at most 3n pairwise disjoint subsets of X- can have a common ele-
ment y in their closures (a similar estimate holds for (o U)n) . Q.E.D.

We next improve this lemma in the case of an antianticompact
topology on X.

2.2. LEMMA. Let X and e be as above and assume that X E A (e)
is an antianticompact T2 topology on X. Then X = X0.
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PROOF. According to 1.2, Xo is antianticompact. In view of
lemma 2.1 we prove that X ç Xo . Be x e 0 e X let be a support
of x and 0 and fix ci, di, i E n, such that 
= n and di[ng = Where g = f U go, go =

;en

This is possible, since X is open in ( Un, U~§). We
will prove that We set for ECn and y E P,

~} and prove by induction on JEJ that

Assume that . We show that for each
To this

end we observe, that y) is a T2 topology on ]c$, di[ in 4 « u
u go V y’nBfil) and since (e U go V = Q~, we may con-
clude from [3] that XIL is one of the following topologies: discrete,
half open interval (these 3 topologies are anticompact by [8]) or the
order topology which is the only antianticompact one (and therefore
it is XIL). We next consider the interval ]ai, bi[ around y(i) = x(i)
which corresponds to the connectedness component of y) n Q
around y : ai  x(i) and bi are in [ci , di] n U y’n) . Since

Combining these results we may conclude:

2.3 THEOREM. In the Mostowski model a Hausdorff space is anti-

anticompact, if and only if it is a continuous one-to-one image of a
Dedekind-finite subset of U~, U with the order topology.

PROOF. We consider an antianticompact T2 space (X, X) in J (e)
By 2.2 to each orbit o = orbe x there corresponds naturally an em-
bedding (topologically) where is homeomorphic to
some orbit orb, a, a E Since the set of all orbits orb, a, a E Un,
nEw is countable, also the set 0 of all e-orbits of X is countable,
for otherwise there are uncountably many orbits o(ot), (xea)iy with
the same image f;(a)O(Cl) = orbe a, a E would be an

uncountable subset of X, contradicting 1.1. Consequently the topo-
logical sum D of 0 can be embedded in U~ and the functions induce

a continuous bijective mapping f : D - X. Since X is Dedek indfinite,
so is D. This proves « only if ». The converse implication is 1.2. Q.E.D.

It follows, than in the Mostowski model finite products of anti-
anticompact T2 spaces are antianticompact.
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3. Additional remarks.

Using lemma 2.1, we can answer a question from [4] concerning
the following properties of a topological space (X, X). X is Al, if

for every open covering 0 there is a neighborhood choice function
f : X - 0 such that x E f (x). X is A2, if there is a f : X - X such that
x E f (x) and f’X refines 0. AC implies that every space is A1, and
conversely, the assertion «every T2 space is Al » implies AC and
« every T2 space is A2 &#x3E;&#x3E; implies MC (every set is a union of a well
orderable family of finite sets). In ZFo AC ~ PW, where ZF’°
is set theory minus foundation and PW asserts that the power set
of an ordinal is well orderable, in ZF’ + foundation) PW =&#x3E; AC,
but in ZI’° MO In [4] it was shown that the as-
sertion «every hereditarily A2 T2-space is a union of a well orde-
rable family of discrete sets (property D2) » is in strength between
MC and PW. The problem was left open, if it implies MC (in ZF°,
of course). The following partial answer was provided: In the or-

dered Mostowski model every hereditarily Al + T2 space is well or-
derable.

3.1 THEOREM. In the ordered Mostowski model every heredita-

rily A2 T2-space is D2. Hence this assertion does not imply MC in ZFo.
PROOF. Be (X, X) E d (e). Since the family of all orbits orb, (x),

x E X, is well orderable, it suffices to show that orb, x is discrete. As
was observed in 2.2, orbe x is covered by a family of open sets P =

where We show that P is discrete. Since
iEn

by lemma 2.1 is an

open cover of be an A2 map-

ping for 0 in L1 (h) and consider f;(y) = sup E (h u ]ci, di[ .
For some y and all i h n ]ci, di[  y(i)  di . Hence f i(y) = y(i) for
all i and therefore its a neighborhood of
these points y. Since P = orb. y and where 

V(y) is a neighborhood of y for every point y E P.
Similarly W(y) _ z(i) ~ y(i) for all i} is a neighborhood of y,
whence ~y~ = V(y) r’1 ~W(y) is isolated. Q.E.D.

As was observed in [4], there are compact (hence T2 spaces
in the Mostowski model which are not D2.

While antianticompact T2 spaces do not exist in the presence
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of AC, the large class of anticompact spaces does not conflict with AC.
A space is anticompact, if compact subsets are finite (example: discrete
spaces or D-finite subsets of R). We next investigate, if nondiscrete
first countable anticompact T2 spaces can exist. We shall relate this
question to the countable multiple choice axiom (if (En)nEro is
a countable sequence of nonempty sets, there is a sequence (F n)nEro of
finite sets such In (unknown for
Z.F’) and (A C~ : countable A C) .

3.2 LEMMA. (1) In ZF0 -f- a T2 space with a countable local
base is a Kelley k-space (A is closed, if and only if A is closed,
.K all compact sets). 

°

(2) In ZF° anticompact T2 + k-spaces are discrete.

PROOF. For (2) see [1]. (1) is a modification of standard argu-
ments. and consider a neighborhood base (Un)nEro at p,

By Maw there is a sequence of finite sets such

F n ~ ZIn r1 A..K = {p} u U .F" is compact, because the open
nEw

sets containing p are cofinite in .K, and p E (g r1 A)-. is

not closed. Q.E.D.

3.3 THEOREM. Maw is equivalent to the proposition that anti-
compact metrizable topological groups are discrete.

PROOF. If Maw holds, we get « discrete » by an application of the
previous lemma. For the proof of the converse, we will start with
a counterexample PMC°, .En n Em = 0 m, and
construct an anticompact metric group with no isolated points.
PMCM is the axiom that there is an infinite set and a sequence

of finite sets such that for (c P » stands
for «partial ») . As was shown in [5], We set E =

the system of all finite subsets

of .E, Xn = On X we consider the Baire-metric: d(x, x) = 0
and i and
The group-multiplication is the symmetric difference (ABB) U (BBA).
As is easily verified, .X is a metric topological group without isolated
points. We show that X is anticompact. Let g be compact. First
we observe, that Xn is closed and discrete, since d(x, y) &#x3E; 1/(m + 1),
whenever x E .Xn, y y E y n  m, and because X = U Xn. Hence

nEw
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.K r1 .Xn is finite. This implies that -
is finite, whence..,’ is finite, too. For if n E A, then

F n = .E~, r’1 ( V .K) is nonempty and as Fn C U (.K r1 Xn+l)’ .F’n is finite.
So would define a PMC-function of contradiction.

Q.E.D.

In [2] the same construction with finite sets En was used to obtain
a a-compact group which is not Lindel6f. 3.3 shows, that the finite-
ness of the sets En was essential there.
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