
RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITÀ DI PADOVA

E. BAROZZI

I. TAMANINI
On the convergence of minimal boundaries
with obstacles
Rendiconti del Seminario Matematico della Università di Padova,
tome 74 (1985), p. 75-84
<http://www.numdam.org/item?id=RSMUP_1985__74__75_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1985, tous
droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico
della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RSMUP_1985__74__75_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


On the Convergence of Minimal Boundaries
with Obstacles.

E. BAROZZI - I. TAMANINI (*)

In this note we continue the analysis of the following problem:
given En, a set with minimal boundary with respect to the obstacle
L, (h = , 2, ...), when will the limit set of the sequence Ey~ have
minimal boundary with respect to the limit obstacle?

(We are assuming that both sequences are convergent in the
see Section 1 below for the definition of this and related

concepts).
In Tamanini [6], a first result in this direction was established,

and some examples and counterexamples were discussed. It is the

purpose of the present paper to investigate an alternative condition,
still guaranteeing that the answer to the above question is in the
affirmative.

Roughly speaking, we will assume that the mean curvature of
the obstacles be uniformly bounded from above by a fixed integrable
function H’(x). We remark that a similar condition has been exploited
in Barozzi-Tamanini [2], where it is shown that on the stated assump-
tion, the obstacle problem for minimal boundaries is equivalent to
the problem of minimizing an unconditioned functional, containing
a curvature term depending on H(x). (We refer to [2] for a detailed
discussion of this result). The above equivalence is not needed in
its fullness in the study of convergence properties of minimal boun-
daries. Consequently, the basic hypotesis can be slightly relaxed,
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and the argument becomes still more elementary. This will be done
in Section 1 below.

Examples showing the independence of the assumptions used
here and in [6] are presented in Section 2. Finally, we show in Section 3
that the same result can also be obtained by refining the argument
of [6].

1. In the following, Q will denote a fixed open set of Rn, n ~ 2,
and A an open bounded subset of D, with A cc Q (i.e. Let

E, L c R" be sets of locally finite perimeter in Q, i.e.

for every .A. and similarly for L.
Here, qs denotes the characteristic function of E, and is

the total variation of the distributional gradient of qs. We recall
that when aA is locally lipschitz, then 97,, has a trace (which we also
denote by qs) belonging to See Giusti [3] or Massari-Miranda [4].

Assume that

where set inclusion is to be intended in the usual measure theoretical

sense, so that (1.1) means )~nZ2013jE7~=0, j-~ I denoting Lebesgue
measure in Itn.

When (1.1), (1.2) hold, E will be called a set of minimal boundary
with respect to the obstacle L. The reader is referred to Massari-

Miranda [4], Barozzi-Massari [1], Tamanini [7], for a discussion of

the existence and regularity of the solution of (I ,I ) , (1.2 ) corresponding
to a given obstacle L.

Now, assume we are given a sequence of obstacles and a corres-

ponding sequence ~E~~ of solutions, satisfying (1.1), (1.2).
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Assume that .Lh ~-~- Zo and jE7~ -~ Eo, locally in ,5~, that is:

and similarly for Eo . As a simple example shows (see e.g. Tama-
nini [6], Section 3, ii)), it may happen that Eo is not a solution with
respect to Lo . An additional condition implying that Eo is a solution
with respect to ..Lo was introduced in Tamanini [6]. Specifically, setting
for B, L

with E r1 A D .L r1 A, and assuming that

and that

it holds (see Tamanini [6], pa,g. 155):

From this the above assertion follows at once, by noting that "I’A(E,
L) = 0 iff E is a solution with respect to L.

In this paper the same result will be proved with (1.6) replaced
by the following assumption

The meaning of condition (H) is illustrated in Barozzi-Massari [1],
where it is used in connection with the study of the regularity of minimal
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boundaries with obstacles. A variant of (.~) has been used in Barozzi-
Tamanini [2], in connection with a problem of penalization.

Roughly speaking, it implies an upper bound of the mean curva-
ture of in Q.

Among the simplest geometrical conditions implying (H), we
recall the Internal Sphere Condition o f radius .R :

where, as usual, Bre,t denotes the open n-ball of centre x and radius
t &#x3E; 0. The fact that (I8CB) implies (H), with H(x) = n/R, follows
from (1.10) of Tamanini [5].

We are now in position to prove the following

THEOREM. Suppose that, for every h ~ 1., E h has minimal boundary
in Q with respect to the obstacle L h ; let L -* Lo and E h ~ Eo locally
in S~ and, moreover, let condition (H) hold ; then Eo has minimal boundary
with respect to the obstacle .Lo, and in addition

PROOF. First, we show that

For, if A and F are as in (1.9), then by (1.2), 2.1.2 (10) of Massari-
Miranda [4] and (.H), we obtain:

as required.
Next, fix A cc ,~ and h’: F A .Eo cc A. Then, by passing, if neces-

sary, to subsequences, we can pick an open set B, with lipschitz boundary
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aB, such that:

Put .

Writing (1.9) for using (1.12) and reducing terms, we find for
every h ~ 1:

(recall that E L, 
Letting h - + oo in (1.13) we obtain, by virtue of (1.10), (1-11),

the lower semicontinuity of the perimeter and Lebesgue dominated
convergence theorem:

which holds for every .F: If in addition we assume that
F r’1 A D Lo r1 A, then the integral in (4.14) vanishes, thus showing
that Eo has minimal boundary in S~ with respect to .Lo .

Moreover, writing (1.13) for .F’ = Eo and letting h -~ + oo we get

which implies

for every open A’ cc B such that = 0 (see e.g. Giusti [3],
Prop. 1.13).

Assertion (1.8) now follows at once. C.V.D.
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2. We point out that our present assumption (H) is independent
of (1.6).

To show this, we consider the following examples.

I) Consider, y for every (see figure l ), where

Fig. 1. 

Li = conv (Ba , B+) and B~, i = 1, 2, denotes the closed disk in Q =
= R2 of unit radius and centered at

and where cono denotes the convex hull. Clearly, y (IS01) holds for
every so that (H) holds for every while

Here, = for every h ~ 0

II) Denote by Si the sector of the circle of radius and angle
2nli in figure 2 and, for j = 1121 ..., i, denote by the sector Si
rotated clockwise by 2n(j - l )/i.



81

Fig. 2.

Then form the sequence Z h as follows:

We have -* 0, IL, -* 0 as h - + co, so that (1.6) holds,
with .Lo ---- 0.

On the other hand, assume by contradiction that (H) holds. Then,
recalling that f for suitable and
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setting

we would derive from (.g) :

for every i &#x3E; 1 and j E {1, ..., i~ . By summing over j = 1, ... , i we thus
get for every i :

which gives the desired contradiction, since He 

3. We notice that the preceding theorem can also be proved by
the method developed in Tamanini [6].

In fact, one can show that (1.7) holds in the hypothesis (1.5) and (H).
To see this, fix A cc Sz and F: F A Eo cc A, F n A D .Lo n A. Then,
as in the proof of the Theorem, choose B with lipschitz boundary aB
such that

Setting
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Thus:

Now we use (H) to show that

For, setting 6~ = (Z~ 2013 B) u (F r1 L, r1 B) and observing that
and Gh c Lh, I we get from (H) that

Using 2.10.2 (10) of Massari-Miranda [4] and rearranging, we obtain

which implies (1.18) (recall (1.16) and that
From (1.17), (1.18) and (1.16) we get

and (1.7) follows immediately.

REMARK. Assuming a stronger integrability of ~, the conclusion
in (1.8) can be improved.

For example, y if condition (H) holds with H E and p &#x3E; nl

then we derive from known regularity results for almost-minima,
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boundaries (see Tamanini [7]y [8]) that

for every h sufficiently large, and ~ VBo(XO)’ where, as usual
(see Giusti [3] or Massari-Miranda [4]), 8*E denotes the « reduced

boundary)) of E and v$(x) is the inner unit normal to 8E at x.
We refer for details to Tamanini [8].
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