RENDICONTI del Seminario Matematico della Università di Padova

TULLIO VALENT

A property of multiplication in Sobolev spaces. Some applications

Rendiconti del Seminario Matematico della Università di Padova, tome 74 (1985), p. 63-73

<a>http://www.numdam.org/item?id=RSMUP_1985__74__63_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1985, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 74 (1985)

A Property of Multiplication in Sobolev Spaces. Some Applications.

TULLIO VALENT (*)

SUMMARY - Let Ω be an open subset of \mathbb{R}^n having the cone property. In Sect. 1, Theorem 1 concerns the conditions on the numbers p, q, r and m for (the pointwise) multiplication is a continuous function of $W^{m,p}(\Omega) \times W^{m,q}(\Omega)$ into $W^{m,r}(\Omega)$. As a consequence of Theorem 1, multiplication is a continuous function of $W^{m,p}(\Omega) \times W^{m,q}(\Omega)$ into $W^{m,q}(\Omega)$ if the following conditions are satisfied: $q \leq p, mp > n$ and, if $p \neq q$ and the volume of Ω is infinite, $mq \leq n$. In particular one deduces the well known fact that $W^{m,p}(\Omega)$ is a Banach algebra if mp > n. In Sect. 2 we apply Theorem 1 in showing a property of the Nemytsky operator: see Theorem 2. The proof of such a property given in [2] (see Lemma 1) is not completely correct.

1. A property of multiplication in Sobolev spaces.

Let Ω be an open subset of $\mathbb{R}^n(n \ge 1)$, let *m* be an integer ≥ 1 and let p, q, r be real numbers ≥ 1 . $W^{m,p}(\Omega)$ will denotes the vector space $\{v \in L^p(\Omega): D^x v \in L^p(\Omega), o \le |\alpha| \le m\}$ with the norm $\|\cdot\|_{m,p}$ defined by

$$||v||_{m,p} = \left(\sum_{|\alpha| \leq m} ||D^{\alpha}v||_{0,p}^{p}\right)^{1,p},$$

where $\|\cdot\|_{0,p}$ is the usual norm of $L^{p}(\Omega)$. We will put $D_{i} = \partial/\partial x_{i}$, (i = 1, ..., n).

(*) Indirizzo dell'A.: Seminario Matematico, Università di Padova, via Belzoni 7, 35131 Padova (Italy). **Tullio** Valent

THEOREM 1. Assume that Ω has the cone property, and that $p \ge r$, $q \ge r$ and

$$\frac{m}{n} > \frac{1}{p} + \frac{1}{q} - \frac{1}{r}.$$

If the volume of Ω is infinite, assume further that $mp \leq n$ when $q \neq r$, that $mq \leq n$ when $p \neq r$ and that

$$rac{m-1}{n} \leqslant rac{1}{p} + rac{1}{q} - rac{1}{r}$$
 when $p
eq r$, $q
eq r$.

Then, if $u \in W^{m,p}(\Omega)$ and $v \in W^{m,q}(\Omega)$, we have $uv \in W^{m,r}(\Omega)$ and there exists a positive number c independent of u and v such that $||uv||_{m,r} \le < c ||u||_{m,p} ||v||_{m,q}$.

PROOF (by induction on *m*). As a first step we prove that the statement is true for m = 1. Then we suppose that $u \in W^{1,p}(\Omega)$ and $v \in W^{1,q}(\Omega)$ with $p \ge r$, $q \ge r$, $p \le n$ if $q \ne r$, $q \le n$ if $p \ne r$,

(1.1)
$$\frac{1}{p} + \frac{1}{q} - \frac{1}{r} < \frac{1}{n}$$

and

(1.2)
$$\frac{1}{p} + \frac{1}{q} - \frac{1}{r} \ge 0$$
 (if $p \ne r \ne q$),

and we show that $uv \in W^{1,r}(\Omega)$ and that $||uv||_{1,r} < c||u||_{1,p} ||v||_{1,q}$, where c is a positive number independent of u and v. Moreover we show that, if Ω has finite volume, the conclusion holds without assumption (1.2) and without the conditions $q \neq r \Rightarrow p < n$ and $p \neq r \Rightarrow q < n$.

If q > r [resp. p > r] let α [resp. β] be the real number such that

$$rac{1}{lpha}+rac{1}{q}=rac{1}{r}\,,\quad \Big[ext{resp.}\,rac{1}{p}+rac{1}{eta}=rac{1}{r}\Big],$$

(i.e., $\alpha = qr/(q-r)$ and $\beta = pr/(p-r)$). Holder's inequality yields

64

the following implications

$$(1.3) \begin{cases} w_{1} \in L^{p}(\Omega) , \quad p > r , \quad w_{2} \in L^{\beta}(\Omega) \Rightarrow w_{1}w_{2} \in L^{r}(\Omega) , \\ \|w_{1}w_{2}\|_{0,r} \leqslant c_{1}\|w_{1}\|_{0,p}\|w_{2}\|_{0,\beta} , \\ w_{1} \in L^{q}(\Omega) , \quad q > r , \quad w_{2} \in L^{\alpha}(\Omega) \Rightarrow w_{1}w_{2} \in L^{r}(\Omega) , \\ \|w_{1}w_{2}\|_{0,r} \leqslant c_{1}\|w_{1}\|_{0,q}\|w_{2}\|_{0,\alpha} , \end{cases}$$

where c_1 is a positive number independent of w_1 and w_2 .

Note that, by virtue of (1.1), $p \leq n$ implies q > r and $q \geq n$ implies p > r.

A basic remark is that, if p < n [resp. q < n], condition (1.1) is equivalent to the condition

$$lpha < \! rac{np}{n-p} \quad \left[ext{resp.} \ eta \! < \! rac{nq}{n-q}
ight],$$

while condition (1.2) is equivalent to the condition $p \leq \alpha$ [resp. $q \leq \beta$].

Hence, by the Sobolev imbedding theorem (see e.g. Adams [1], Theorem 5.4) the following continuous imbedding holds if p < n [resp. q < n]:

(1.4)
$$W^{1,p}(\Omega) \subseteq L^{\alpha}(\Omega)$$
, [resp. $W^{1,q}(\Omega) \subseteq L^{\beta}(\Omega)$].

We are now in a position to easily recognize that

.

(1.5)
$$\begin{cases} w_{1} \in L^{p}(\Omega) , & w_{2} \in W^{1,q}(\Omega) \Rightarrow w_{1}w_{2} \in L^{r}(\Omega) , \\ & \|w_{1}w_{2}\|_{0,r} \leqslant c_{2}\|w_{1}\|_{0,p}\|w_{2}\|_{1,q} , \\ w_{1} \in L^{q}(\Omega) , & w_{2} \in W^{1,p}(\Omega) \Rightarrow w_{1}w_{2} \in L^{r}(\Omega) , \\ & \|w_{1}w_{2}\|_{0,r} \leqslant c_{2}\|w_{1}\|_{0,q}\|w_{2}\|_{1,p} , \end{cases}$$

where c_2 is a positive number independent of w_1 and w_2 .

Indeed, if $p \leq n$ and $q \leq n$, then by (1.1) we have p > r and q > r; thus (1.5) is an immediate consequence of (1.3) and (1.4). If q > nand $p \leq n$ [resp. p > n and $q \leq n$] then p = r and $W^{1,q}(\Omega) \subseteq L^{\beta}(\Omega)$ [resp. q = r and $W^{1,p}(\Omega) \subseteq L^{\alpha}(\Omega)$], and therefore the first [resp. second] of the implications (1.5) follows from Hölder's inequality because $W^{1,q}(\Omega)$ [resp. $W^{1,p}(\Omega)$], by the Sobolev imbedding theorem, can be continuously imbedded into $L^{\infty}(\Omega)$, while the second [resp. first] of the implications (1.5) is a consequence of the second [resp. first] of the implications (1.3). Finally, if p > n and q > n, then p = r = qand $W^{1,p}(\Omega)$ can be continuously imbedded into $L^{\infty}(\Omega)$; thus (1.5) follows once more from Hölder's inequality.

Observe that, if Ω has finite volume, then $s_1 \leq s_2 \Rightarrow L^{s_2}(\Omega) \subseteq L^{s_1}(\Omega)$; therefore, in this case, the continuous imbedding (1.4) does not need condition (1.2), and the deduction of (1.5) does not need the implications $q \neq r \Rightarrow p \leq n$ and $p \neq r \Rightarrow q \leq n$.

In view of (1.5) we have

(1.6)
$$uv \in L^{r}(\Omega)$$
, $vD_{i}u \in L^{r}(\Omega)$, $uD_{i}v \in L^{r}(\Omega)$, $(i = 1, ..., n)$.

Let now $(u_k)_{k\in\mathbb{N}}$ and $(v_k)_{k\in\mathbb{N}}$ be sequences in $C^{\infty}(\Omega) \cap W^{1,p}(\Omega)$ and in $C^{\infty}(\Omega) \cap W^{1,q}(\Omega)$ respectively such that

(1.7)
$$\lim_{k\to\infty} \|u_k - u\|_{1,p} = 0, \quad \lim_{k\to\infty} \|v_k - v\|_{1,q} = 0.$$

Since by (1.5) we have

$$\begin{aligned} \|v_k D_i u_k - v D_i u\|_{0,r} &\leq \|v_k (D_i u_k - D_i u)\|_{0,r} + \\ &+ \|(v_k - v) D_i u\|_{0,r} &\leq \|D_i u_k - D_i u\|_{0,p} \|v_k\|_{1,q} + \\ &+ \|v_k - v\|_{1,q} \|D_i u\|_{0,p} &\leq \|u_k - u\|_{1,p} \|v_k\|_{1,q} + \|v_k - v\|_{1,q} \|u\|_{1,p}, \end{aligned}$$

and

$$\begin{aligned} \|u_k D_i v_k - u D_i v\|_{0,r} &\leq \|u_k (D_i v_k - D_i v)\|_{0,r} + \\ &+ \|(u_k - u) D_i v\|_{0,r} &\leq \|D_i v_k - D_i v\|_{0,p} \|u_k\|_{1,p} + \\ &+ \|u_k - u\|_{1,p} \|D_i v\|_{0,q} \|v_k - v\|_{1,q} \|u_k\|_{1,p} + \|u_k - u\|_{1,p} \|v\|_{1,q}, \end{aligned}$$

then from (1.7) it follows that

(1.8)
$$\lim_{k\to\infty} \|(v_k D_i u_k + u_k D_i v_k) - (v D_i u + u D_i v)\|_{0,r} = 0.$$

Using Holder's inequality we can immediately deduce from (1.8)

66

that

$$\int_{\Omega} (vD_i u + uD_i v) \varphi \, dx + \int_{\Omega} uvD_i \varphi \, dx =$$

=
$$\lim_{k \to \infty} \left[\int_{\Omega} (v_k D_i u_k + u_k D_i v_k) \varphi \, dx + \int_{\Omega} u_k v_k D_i \varphi \, dx \right] \quad \forall \varphi \in \mathfrak{D}(\Omega) ,$$

whence

(1.9)
$$\int_{\Omega} (vD_i u + uD_i v) \varphi \, dx + \int_{\Omega} uvD_i \varphi \, dx = 0 \quad \forall \varphi \in \mathfrak{D}(\Omega) \,,$$

because, being $D_i(u_k v_k) = v_k D_i u_k + u_k D_i v_k$, we have

$$\int_{\Omega} (v_k D_i u + u_k D_i v_k) \varphi \, dx + \int_{\Omega} u_k v_k D_i \varphi \, dx = 0$$

Note that (1.9) means that

$$vD_iu + uD_iv = D_i(uv);$$

hence $D_i(uv) \in L^r(\Omega)$ because of (1.6). Moreover by (1.6) uv belongs to $L^r(\Omega)$. Thus we conclude that $uv \in W^{1,r}(\Omega)$. Finally, from (1.5) we obtain

$$\|uv\|_{1,r} \leq c_{3} \left(\|uv\|_{0,r} + \sum_{i=1}^{n} \|vD_{i}u + uD_{i}v\|_{0,r} \right) \leq c_{4} \left(\|u\|_{1,p} \|v\|_{1,q} \right) + \sum_{i=1}^{n} \left(\|D_{i}u\|_{0,p} \|v\|_{1,q} + \|u\|_{1,p} \|D_{i}v\|_{0,q} \right) \leq c_{5} \|u\|_{1,p} \|v\|_{1,q},$$

where c_3 , c_4 and c_5 are positive numbers independent of u and v. As a second step of our induction argument, we now suppose that the statement of Theorem 1 is true for an m(>1) and we will prove that, consequently, it is true even when m is replaced by m + 1. Accordingly, let p_1 , q_1 , r_1 be real numbers >1 such that $p_1 > r_1$, $q_1 > r_1$ and

(1.10)
$$\frac{m+1}{n} > \frac{1}{p_1} + \frac{1}{q_1} - \frac{1}{r_1}$$

and let $u_1 \in W^{m+1,p}(\Omega)$ and $v \in W^{m+1,q}(\Omega)$. If the volume of Ω is infinite we also suppose that

(1.11)
$$\frac{m}{n} \leq \frac{1}{p_1} + \frac{1}{q_1} - \frac{1}{r_1}$$
 in the case $p_1 \neq r_1 \neq q_1$,

that $(m+1)p_1 \leq n$ in the case $q_1 \neq r_1$ and that $(m+1)q_1 \leq n$ in the case $p_1 \neq r_1$.

We begin by considering the case when $mp_1 \leq n$ and $mq_1 \leq n$, with m > 1. We set

$$\widetilde{p}_1 = rac{np_1}{n-p_1}$$
 and $\widetilde{q}_1 = rac{nq_1}{n-q_1}$.

By the Sobolev imbedding theorem, under our hypotheses, we have

$$u \in W^{m,\tilde{p}_1}(\Omega), \quad v \in W^{m,\tilde{q}_1}(\Omega),$$

besides

$$D_i u \in W^{m,p_1}(\Omega), \quad D_i v \in W^{m,q_1}(\Omega), \quad (i=1,...,n).$$

Remark that, since

(1.12)
$$\frac{1}{\tilde{p}_1} = \frac{1}{p_1} - \frac{1}{n}$$
 and $\frac{1}{\tilde{q}_1} = \frac{1}{q_1} - \frac{1}{n}$,

(1.10) implies

(1.13)
$$\frac{m}{n} > \frac{1}{\tilde{p}_1} + \frac{1}{q_1} - \frac{1}{r_1}$$
 and $\frac{m}{n} > \frac{1}{p_1} + \frac{1}{\tilde{q}_1} - \frac{1}{r_1}$.

If the volume of Ω is finite, this suffices to deduces (via the induction hypothesis) that

$$vD_iu \in W^{m,r_1}(\Omega), \quad uD_iv \in W^{m,r_1}(\Omega)$$

.

and that

$$(1.14) \quad \|vD_{i}u\|_{m,r_{1}} \leq c_{6} \|v\|_{m,\tilde{q}_{1}} \|D_{i}u\|_{m,p_{1}}, \ \|uD_{i}v\|_{m,r_{1}} \leq c_{6} \|u\|_{m,\tilde{p}_{1}} \|D_{i}v\|_{m,q_{1}},$$

where $c_{\mathbf{s}}$ is a positive number independent of u, v and i; then, in view of the Sobolev imbedding theorem, there exists a positive number c_7 independent of u, v and i such that

$$(1.15) \quad \|vD_{i}u\|_{m,r_{1}} \leqslant c_{7} \|u\|_{m+1,p_{1}} \|v\|_{m+1,q_{1}}, \quad \|uD_{i}v\|_{m,r_{1}} \leqslant c_{7} \|u\|_{m+1,p_{1}} \|v\|_{m+1,q_{1}}.$$

If the volume of Ω is infinite, it is not difficult to realize that our assumptions imply that

(1.16)
$$\frac{m-1}{n} \leq \frac{1}{\tilde{p}_1} + \frac{1}{q_1} - \frac{1}{r_1}$$
 and $\frac{m-1}{n} \leq \frac{1}{p_1} + \frac{1}{\tilde{q}_1} - \frac{1}{r_1}$

Indeed, by (1.12) each of the conditions (1.16) is equivalent to (1.11) and therefore (1.16) holds if $p_1 \neq r_1 \neq q_1$; moreover (1.16) also holds if $p_1 = r_1$ and if $q_1 = r_1$, because (1.11) becomes $mq_1 < n$ if $p_1 = r_1$ and becomes $mq_1 < n$ if $q_1 = r_1$.

Furthermore, since $m\tilde{p}_1 = (m+1)p_1$ and $m\tilde{q}_1 = (m+1)q_1$, if the volume of Ω is infinite we have $m\tilde{p}_1 \leq n$ in the case $q_1 \neq r_1$ and $m\tilde{q}_1 \leq n$ in the case $p_1 \neq r_1$.

Therefore, by the induction hypothesis, estimates (1.15), and consequently (1.16), are true even when the volume of Ω is infinite.

By an analogous way as we obtained (1.15) we can show that $uv \in W^{m,r_1}(\Omega)$ and that a positive number c_8 independent of u and v exists such that

$$(1.17) \|uv\|_{m,r_1} \leq c_8 \|u\|_{m+1,v_1} \|v\|_{m+1,q_1}.$$

We now prove that estimates (1.15) and (1.17) hold also in the four cases: $mp_1 > n$, $mq_1 > n$, $p_1 = n$ with m = 1 and $q_1 = n$ with m = 1.

If $mp_1 > n$ or $mq_1 > n$ it is easily seen that all hypotheses of the statement of Theorem 1 are satisfied, so that (by the induction assumption) multiplication is a continuous operator from $W^{m,p_1}(\Omega) \times W^{m,q_1}(\Omega)$ to $W^{m,r_1}(\Omega)$. This is obvious if the volume of Ω is finite; if the volume of Ω is infinite we need only remark that, if $mp_1 > n$ [resp. $mq_1 > n$], then $q_1 = r_1$ [resp. $p_1 = r_1$].

Let now $p_1 = n$ [resp. $q_1 = n$] and m = 1. If the volume of Ω is finite it may occurs that $q_1 > r_1$ [resp. $p_1 > r_1$]: in this case all hypotheses of the statement of Theorem 1 are again satisfied. If the volume of Ω is infinite we have $q_1 = r_1$ [resp. $p_1 = r_1$]. Note that, in the case when $p_1 = n$, $q_1 = r_1$ [resp. $q_1 = n$, $p_1 = r_1$] and m = 1, the hypotheses of the statement of Theorem 1 are satisfied provided p_1 [resp. q_1] is replaced by \tilde{p}_1 [resp. \tilde{q}_1], where \tilde{p}_1 [resp. \tilde{q}_1] is any number $> p_1$ [resp. $> q_1$]. Thus, recalling that (by the Sobolev imbedding theorem) $W^{2,p_1}(\Omega)$ [resp. $W^{2,q_1}(\Omega)$] can be continuously imbedded into $W^{1,\tilde{p}_1}(\Omega)$ [resp. $W^{1,\tilde{q}_1}(\Omega)$], from the induction hypothesis we get that, if $p_1 = n$ [resp. $q_1 = n$], then multiplication is a continuous operator from $W^{2,p_1}(\Omega) \times W^{1,q_1}(\Omega)$ [resp. $W^{1,p_1}(\Omega) \times W^{2,q_1}(\Omega)$] to $W^{1,r_1}(\Omega)$.

This evidently shows what we wanted: that (1.15) and (1.17) are true also in the four cases $mp_1 > n$, $mq_1 > n$, $p_1 = n$ with m = 1, and $q_1 = n$ with m = 1.

Now, using the density of $C^{\infty}(\Omega) \cap W^{m,s}(\Omega)$ in $W^{m,s}(\Omega)$, $1 \leq s \in \mathbb{R}$, we can deduce, by a procedure quite analogous to the one developed in the first step, that $D_i(uv) = v \ D_i u + u \ D_i v$. Then, in view of (1.15) and (1.17), we can conclude that $uv \in W^{m+1,r_1}(\Omega)$ and that $\|uv\|_{m+1,r_1} \leq c_s \|u\|_{m+1,r_1} \|v\|_{m+1,r_1}$, where c_s is a positive number independent of u and v. Thus the induction argument is complete. \Box

2. A property of the Nemytsky operator.

Let N be an integer ≥ 1 and let $(x, y) \mapsto f(x, y)$ be a real function defined in $\Omega \times \mathbb{R}^{N}$. For any function $\sigma: \Omega \to \mathbb{R}^{N}$ let $F(\sigma): \Omega \to \mathbb{R}$ be the function defined by setting

(2.1)
$$F(\sigma)(x) = f(x, \sigma(x)), \quad x \in \Omega.$$

We will denote by $C^m(\overline{\Omega} \times \mathbb{R}^N)$ the set of real functions defined in $\Omega \times \mathbb{R}^N$ which are restrictions to $\Omega \times \mathbb{R}^N$ of some C^m -function of $\mathbb{R}^n \times \mathbb{R}^N$ into \mathbb{R} .

THEOREM 2. Assume that Ω is bounded and has the cone property, that $f \in C^m(\overline{\Omega} \times \mathbb{R}^N)$ and that mp > n. Then $\sigma \mapsto F(\sigma)$ is a continuous operator of $(W^{m,p}(\Omega))^N$ into $W^{m,p}(\Omega)$.

PROOF (by induction on *m*). We denote by $F_{x_i}(\sigma)$ and $F_{y_j}(\sigma)$, (i = 1, ..., n; j = 1, ..., N), the real functions defined in Ω by setting

$$F_{x_i}(\sigma)(x) = rac{\partial f}{\partial x_i}(x,\sigma(x)), \quad F_{y_j}(\sigma)(x) = rac{\partial f}{\partial y_j}(x,\sigma(x)).$$

We begin with the case m = 1. Accordingly, let $f \in C^1(\overline{\Omega} \times \mathbb{R}^N)$ and

p > n. By the Sobolev imbedding theorem each $v \in W^{1,p}(\Omega)$ is an equivalence class of functions containing a continuous and bounded function, which we still denote by v, and there exists a positive number $c_{1,v}$ independent of v such that

(2.2)
$$\|v\|_{0,\infty} \leq c_{1,p} \|v\|_{1,p} \quad \forall v \in W^{1,p}(\Omega),$$

where $\|\cdot\|_{0,\infty}$ is the norm of $L^{\infty}(\Omega)$. Then, if $\sigma \in (W^{1,p}(\Omega))^N$, the equivalence classes $F(\sigma)$, $F_{x_i}(\sigma)$ and $F_{y_j}(\sigma)$ can be identified with continuous and bounded functions. Let $\sigma = (\sigma_j)_{j=1,\dots,N} \in (W^{1,p}(\Omega))^N$ and let $(\sigma^k)_{k \in \mathbb{N}}$ be a sequence in $(C^{\infty}(\Omega) \cap W^{1,p}(\Omega))^N$ which converges to σ in $(W^{1,p}(\Omega))^N$, and therefore by (2.2) in $(L^{\infty}(\Omega))^N$. We have

(2.3)
$$D_i F(\sigma^k) = F_{x_i}(\sigma^k) + \sum_{j=1}^N F_{y_j}(\sigma^k) D_j \sigma_j^k.$$

Since $(\sigma^k)_{k\in\mathbb{N}}$ converges to σ in $(L^{\infty}(\Omega))^N$, then $(F(\sigma^k))_{k\in\mathbb{N}}$, $(F_{x_i}(\sigma^k))_{k\in\mathbb{N}}$ and $(F_{v_j}(\sigma^k))_{k\in\mathbb{N}}$ converge in $L^{\infty}(\Omega)$ respectively to $F(\sigma)$, $F_{x_i}(\sigma)$ and $F_{v_j}(\sigma)$, and therefore $\left(F_{x_i}(\sigma^k) + \sum_{j=1}^N F_{v_j}(\sigma^k)D_i\sigma_j^k\right)_{k\in\mathbb{N}}$ converges in $L^p(\Omega)$ to $F_{x_i}(\sigma) + \sum_{j=1}^N F_{v_j}(\sigma)D_i\sigma_j$. Consequently, by Hölder's inequality we have, for any $\varphi \in \mathfrak{D}(\Omega)$,

(2.4)
$$\int_{\Omega} \left(F_{x_i}(\sigma) + \sum_{j=1}^{N} F_{y_j}(\sigma) D_i \sigma_j \right) \varphi \, dx + \int_{\Omega} F(\sigma) D_i \varphi \, dx = \\ = \lim_{k \to \infty} \left[\int_{\Omega} \left(F_{x_i}(\sigma^k) + \sum_{j=1}^{N} F_{y_j}(\sigma^k) D_i \sigma_j^k \right) \varphi \, dx + \int_{\Omega} F(\sigma^k) D_i \varphi \, dx \right].$$

Because of (2.3) we have for any $k \in \mathbb{N}$ and any $\varphi \in \mathfrak{D}(\Omega)$

$$\iint_{\Omega} \left(F_{x_i}(\sigma^k) + \sum_{j=1}^N F_{y_j}(\sigma^k) D_i \sigma_j^k \right) \varphi \, dx + \int_{\Omega} F(\sigma^k) D_i \varphi \, dx = 0$$

and therefore, by (2.4), we obtain

$$\iint_{\Omega} \left(F_{x_i}(\sigma) + \sum_{j=1}^{N} F_{y_j}(\sigma) D_i \sigma_j \right) \varphi \, dx + \int_{\Omega} F(\sigma) D_i \varphi \, dx = 0 \qquad \forall \varphi \in \mathfrak{D}(\Omega) ,$$

which means

(2.5)
$$D_i F(\sigma) = F_{x_i}(\sigma) + \sum_{j=1}^N F_{y_j}(\sigma) D_i \sigma_j.$$

Since the equivalence classes $F(\sigma)$, $F_{x_i}(\sigma)$ and $F_{y_j}(\sigma)$ contain a continuous and bounded function, from (2.5) if follows that $F(\sigma) \in W^{1, p}(\Omega)$.

To prove that $F: (W^{1,p}(\Omega))^N \to W^{1,p}(\Omega)$ is continuous we need only remark that, if a sequence $(\sigma^k)_{k\in\mathbb{N}}$ converges to σ in $(W^{1,p}(\Omega))^N$, then, by (2.2), $(\sigma^k)_{k\in\mathbb{N}}$ converges to σ in $(L^{\infty}(\Omega))^N$, and therefore the sequences $(F(\sigma^k))_{k\in\mathbb{N}}, (F_{x_i}(\sigma^k))_{k\in\mathbb{N}}$ and $(F_{y_j}(\sigma^k))_{k\in\mathbb{N}}$ converge in $L^{\infty}(\Omega)$ respectively to $F(\sigma)$, $F_{x_i}(\sigma)$ and $F_{y_j}(\sigma)$: then $(D_i F(\sigma^k))_{k\in\mathbb{N}}$ converges to $D_i F(\sigma)$ in $L^p(\Omega)$ in view of (2.5), and thus $(F(\sigma^k))_{k\in\mathbb{N}}$ converges to $F(\sigma)$ in $W^{1,p}(\Omega)$.

As a next step, we suppose that the statement of the theorem is true for an m > 1 and we show that, consequently, it holds when mis replaced by m + 1. In order to do this, we assume that $f \in C^{m+1}(\overline{\Omega} \times \mathbb{R}^N)$, that (m + 1)p > n and that $\sigma \in (W^{m+1,p}(\Omega))^N$, and we prove that $F(\sigma) \in W^{m+1,p}(\Omega)$ and that $\sigma \mapsto F(\sigma)$ is a continuous operator from $(W^{m+1,p}(\Omega))^N$ to $W^{m+1,p}(\Omega)$.

Let us recall that (by the Sobolev imbedding theorem) each $v \in W^{m+1,p}(\Omega)$ can be indentified with a continuous function and there is a positive number $c_{m+1,p}$ independent of v such that $||v||_{0,\infty} \leq c_{m+1,p} ||v||_{m+1,p}$ $\forall v \in W^{m+1,p}(\Omega)$. Then, by arguments quite similar to the ones given in the case m = 1, we can show that F is a continuous operator from $(W^{m+1,p}(\Omega))^N$ to $W^{1,p}(\Omega)$ and that (2.5) holds.

It is now convenient to distinguish the cases p > n, p = n and p < n.

If p > n, from the (induction) assumption it follows that F_{x_i} and F_y are continuous operators of $(W^{m,p}(\Omega))^N$ into $W^{m,p}(\Omega)$; therefore F is a continuous operator of $(W^{m+1,p}(\Omega))^N$ into $W^{m+1,p}(\Omega)$, in view of (2.5), because $W^{m,p}(\Omega)$ is a Banach algebra.

Let now p = n, and let $q \in \mathbb{R}$ be such that n < q. Thus mq > n $\forall m \ge 1$ and (by the Sobolev imbedding theorem) $W^{m+1,n}(\Omega)$ can be continuously imbedded into $W^{m,q}(\Omega)$; furthermore, by the (induction) assumption, F_{x_i} and F_{y_i} are continuous operators of $(W^{m,q}(\Omega))^N$ into $W^{m,q}(\Omega)$.

Note that, since mq > n, from Theorem 1 it follows that the pointwise multiplication is a continuous operator of $W^{m,n}(\Omega) \times W^{m,q}(\Omega)$ into $W^{m,n}(\Omega)$. Then we can deduce by (2.5) that $\sigma \mapsto D_i F(\sigma)$ is a continuous operator of $(W^{m+1,n}(\Omega))^N$ into $W^{m,n}(\Omega)$. Consequently $\sigma \mapsto F(\sigma)$ is a continuous operator of $(W^{m+1,n}(\Omega))^N$ into $W^{m+1,n}(\Omega)$. Finally, let us consider the case p < n. In this case the condition (m+1) p > n is equivalent to the condition

$$m \, \frac{np}{n-p} > n$$
 .

Now: F_{x_i} and F_{y_j} are continuous operators of $(W^{m,np/(n-p)}(\Omega))^N$ into $W^{m,np/(n-p)}(\Omega)$ (because of the induction hypothesis), $W^{m+1,p}(\Omega)$ can be continuously imbedded into $W^{m,np/(n-p)}(\Omega)$ (by the Sobolev imbedding theorem), and the pointwise multiplication is a continuous operator of $W^{m,p}(\Omega) \times W^{m,np/(n-p)}(\Omega)$ into $W^{m,p}(\Omega)$ (by Theorem 1). This implies, by (2.5), that $\sigma \mapsto D_i F(\sigma)$ is a continuous operator of $(W^{m+1,p}(\Omega))^N$ into $W^{m,p}(\Omega)$. Therefore, also in this case $\sigma \mapsto F(\sigma)$ is a continuous operator of $(W^{m+1,p}(\Omega))^N$ into $W^{m+1,p}(\Omega)$. \Box

REFERENCES

- [1] A. ADAMS, Sobolev Spaces, Academic Press, 1975.
- [2] T. VALENT, Teoremi di esistenza e unicitá in elastostatica finita, Rend. Sem. Mat. Univ. Padova, 60 (1979), pp. 165-181.

Manoscritto pervenuto in redazione il 15 giugno 1984.