RENDICONTI

del
 SEMINARIO MATEMATICO della Università di Padova

Tullio Valent
 A property of multiplication in Sobolev spaces. Some applications

Rendiconti del Seminario Matematico della Università di Padova, tome 74 (1985), p. 63-73
http://www.numdam.org/item?id=RSMUP_1985__74__63_0
© Rendiconti del Seminario Matematico della Università di Padova, 1985, tous droits réservés.
L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A Property of Multiplication in Sobolev Spaces. Some Applications.

Tullio Valent (*)

Summary - Let Ω be an open subset of \mathbb{R}^{n} having the cone property. In Sect. 1, Theorem 1 concerns the conditions on the numbers p, q, r and m for (the pointwise) multiplication is a continuous function of $W^{m, p}(\Omega) \times W^{m, q}(\Omega)$ into $W^{m, r}(\Omega)$. As a consequence of Theorem 1, multiplication is a continuous function of $W^{m, p}(\Omega) \times W^{m, q}(\Omega)$ into $W^{m, q}(\Omega)$ if the following conditions are satisfied: $q \leqslant p, m p>n$ and, if $p \neq q$ and the volume of Ω is infinite, $m q \leqslant n$. In particular one deduces the well known fact that $W^{m, p}(\Omega)$ is a Banach algebra if $m p>n$. In Sect. 2 we apply Theorem 1 in showing a property of the Nemytsky operator: see Theorem 2. The proof of such a property given in [2] (see Lemma 1) is not completely correct.

1. A property of multiplication in Sobolev spaces.

Let Ω be an open subset of $\mathbb{R}^{n}(n \geqslant 1)$, let m be an integer $\geqslant 1$ and let p, q, r be real numbers $\geqslant 1$. $W^{m, p}(\Omega)$ will denotes the vector space $\left\{v \in L^{p}(\Omega): D^{\alpha} v \in L^{p}(\Omega), o \leqslant|\alpha| \leqslant m\right\}$ with the norm $\|\cdot\|_{m, p}$ defined by

$$
\|v\|_{m, p}=\left(\sum_{|\alpha| \leqslant m}\left\|D^{\alpha} v\right\|_{0, p}^{p}\right)^{1, p}
$$

where $\|\cdot\|_{0, p}$ is the usual norm of $L^{p}(\Omega)$. We will put $D_{i}=\partial / \partial x_{i}$, $(i=1, \ldots, n)$.
${ }^{(*)}$ Indirizzo dell'A.: Seminario Matematico, Università di Padova, via Belzoni 7, 35131 Padova (Italy).

Theorem 1. Assume that Ω has the cone property, and that $p \geqslant r$, $q \geqslant r$ and

$$
\frac{m}{n}>\frac{1}{p}+\frac{1}{q}-\frac{1}{r}
$$

If the volume of Ω is infinite, assume further that $m p \leqslant n$ when $q \neq r$, that $m q \leqslant n$ when $p \neq r$ and that

$$
\frac{m-1}{n} \leqslant \frac{1}{p}+\frac{1}{q}-\frac{1}{r} \quad \text { when } p \neq r, q \neq r
$$

Then, if $u \in W^{m, p}(\Omega)$ and $v \in W^{m, q}(\Omega)$, we have $u v \in W^{m, r}(\Omega)$ and there exists a positive number c independent of u and v such that $\|u v\|_{m, r} \leqslant$ $\leqslant \boldsymbol{*}\|u\|_{m, p}\|v\|_{m, \boldsymbol{c}}$.

Proof (by induction on m). As a first step we prove that the statement is true for $m=1$. Then we suppose that $u \in W^{1, p}(\Omega)$ and $v \in W^{1, q}(\Omega)$ with $p \geqslant r, q \geqslant r, p \leqslant n$ if $q \neq r, q \leqslant n$ if $p \neq r$,

$$
\begin{equation*}
\frac{1}{p}+\frac{1}{q}-\frac{1}{r}<\frac{1}{n} \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{p}+\frac{1}{q}-\frac{1}{r} \geqslant 0 \quad(\text { if } p \neq r \neq q) \tag{1.2}
\end{equation*}
$$

and we show that $u v \in W^{1, r}(\Omega)$ and that $\|u v\|_{1, r} \leqslant c\|u\|_{1, v}\|v\|_{1, e}$, where c is a positive number independent of u and v. Moreover we show that, if Ω has finite volume, the conclusion holds without assumption (1.2) and without the conditions $q \neq r \Rightarrow p \leqslant n$ and $p \neq r \Rightarrow q \leqslant n$.

If $q>r$ [resp. $p>r]$ let α [resp. β] be the real number such that

$$
\frac{1}{\alpha}+\frac{1}{q}=\frac{1}{r}, \quad\left[\operatorname{resp} \cdot \frac{1}{p}+\frac{1}{\beta}=\frac{1}{r}\right]
$$

(i.e., $\alpha=q r /(q-r)$ and $\beta=p r /(p-r)$). Holder's inequality yields
the following implications

$$
\left\{\begin{align*}
w_{1} \in L^{p}(\Omega), \quad p>r, \quad w_{2} \in L^{\beta}(\Omega) & \Rightarrow w_{1} w_{2} \in L^{r}(\Omega), \tag{1.3}\\
& \left\|w_{1} w_{2}\right\|_{0, r} \leqslant c_{1}\left\|w_{1}\right\|_{0, p}\left\|w_{2}\right\|_{0, \beta}, \\
w_{1} \in L^{q}(\Omega), \quad q>r, \quad w_{2} \in L^{\alpha}(\Omega) & \Rightarrow w_{1} w_{2} \in L^{r}(\Omega), \\
& \left\|w_{1} w_{2}\right\|_{0, r} \leqslant c_{1}\left\|w_{1}\right\|_{0, q}\left\|w_{2}\right\|_{0, \alpha},
\end{align*}\right.
$$

where c_{1} is a positive number independent of w_{1} and w_{2}.
Note that, by virtue of (1.1), $p \leqslant n$ implies $q>r$ and $q \geqslant n$ implies $p>r$.

A basic remark is that, if $p<n$ [resp. $q<n$], condition (1.1) is equivalent to the condition

$$
\alpha<\frac{n p}{n-p} \quad\left[\text { resp. } \beta<\frac{n q}{n-q}\right],
$$

while condition (1.2) is equivalent to the condition $p \leqslant \alpha$ [resp. $q \leqslant \beta$].
Hence, by the Sobolev imbedding theorem (see e.g. Adams [1], Theorem 5.4) the following continuous imbedding holds if $p \leqslant n$ [resp. $q \leqslant n]$:

$$
\begin{equation*}
W^{1, p}(\Omega) \subseteq L^{\alpha}(\Omega), \quad\left[\text { resp. } W^{1, q}(\Omega) \subseteq L^{\beta}(\Omega)\right] \tag{1.4}
\end{equation*}
$$

We are now in a position to easily recognize that

$$
\left\{\begin{align*}
& w_{1} \in L^{p}(\Omega), \quad w_{2} \in W^{1, q}(\Omega) \Rightarrow w_{1} w_{2} \in L^{r}(\Omega), \tag{1.5}\\
&\left\|w_{1} w_{2}\right\|_{0, r} \leqslant c_{2}\left\|w_{1}\right\|_{0, p}\left\|w_{2}\right\|_{1, q} \\
& w_{1} \in L^{q}(\Omega), \quad w_{2} \in W^{1, p}(\Omega) \Rightarrow w_{1} w_{2} \in L^{r}(\Omega), \\
&\left\|w_{1} w_{2}\right\|_{0, r} \leqslant c_{2}\left\|w_{1}\right\|_{0, q}\left\|w_{2}\right\|_{1, p},
\end{align*}\right.
$$

where c_{2} is a positive number independent of w_{1} and w_{2}.
Indeed, if $p \leqslant n$ and $q \leqslant n$, then by (1.1) we have $p>r$ and $q>r$; thus (1.5) is an immediate consequence of (1.3) and (1.4). If $q>n$ and $p \leqslant n$ [resp. $p>n$ and $q \leqslant n$] then $p=r$ and $W^{1, q}(\Omega) \subseteq L^{\beta}(\Omega)$ [resp. $q=r$ and $W^{1, p}(\Omega) \subseteq L^{\alpha}(\Omega)$], and therefore the first [resp. second] of the implications (1.5) follows from Hölder's inequality because $W^{1, q}(\Omega)$ [resp. $W^{1, p}(\Omega)$], by the Sobolev imbedding theorem, can be
continuously imbedded into $L^{\infty}(\Omega)$, while the second [resp. first] of the implications (1.5) is a consequence of the second [resp. first] of the implications (1.3). Finally, if $p>n$ and $q>n$, then $p=r=q$ and $W^{1, p}(\Omega)$ can be continuously imbedded into $L^{\infty}(\Omega)$; thus (1.5) follows once more from Hölder's inequality.

Observe that, if Ω has finite volume, then $s_{1} \leqslant s_{2} \Rightarrow L^{s_{2}}(\Omega) \subseteq L^{s_{1}}(\Omega)$; therefore, in this case, the continuous imbedding (1.4) does not need condition (1.2), and the deduction of (1.5) does not need the implications $q \neq r \Rightarrow p \leqslant n$ and $p \neq r \Rightarrow q \leqslant n$.

In view of (1.5) we have
(1.6) $\quad u v \in L^{r}(\Omega), \quad v D_{i} u \in L^{r}(\Omega), \quad u D_{i} v \in L^{r}(\Omega), \quad(i=1, \ldots, n)$.

Let now $\left(u_{k}\right)_{k \in \mathbf{N}}$ and $\left(v_{k}\right)_{k \in \mathbf{N}}$ be sequences in $C^{\infty}(\Omega) \cap W^{1, p}(\Omega)$ and in $C^{\infty}(\Omega) \cap W^{1, q}(\Omega)$ respectively such that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|u_{k}-u\right\|_{1, p}=0, \quad \lim _{k \rightarrow \infty}\left\|v_{k}-v\right\|_{1, \alpha}=0 \tag{1.7}
\end{equation*}
$$

Since by (1.5) we have

$$
\begin{aligned}
\| v_{k} D_{i} u_{k}- & v D_{i} u\left\|_{0, r} \leqslant\right\| v_{k}\left(D_{i} u_{k}-D_{i} u\right) \|_{0, r}+ \\
& +\left\|\left(v_{k}-v\right) D_{i} u\right\|_{0, r} \leqslant\left\|D_{i} u_{k}-D_{i} u\right\|_{0, p}\left\|v_{k}\right\|_{1, q}+ \\
+ & \left\|v_{k}-v\right\|_{1, a}\left\|D_{i} u\right\|_{0, p} \leqslant\left\|u_{k}-u\right\|_{1, p}\left\|v_{k}\right\|_{1, q}+\left\|v_{k}-v\right\|_{1, q}\|u\|_{1, p},
\end{aligned}
$$

and

$$
\begin{aligned}
&\left\|u_{k} D_{i} v_{k}-u D_{i} v\right\|_{0, r} \leqslant\left\|u_{k}\left(D_{i} v_{k}-D_{i} v\right)\right\|_{0, r}+ \\
&+\left\|\left(u_{k}-u\right) D_{i} v\right\|_{0, r} \leqslant\left\|D_{i} v_{k}-D_{i} v\right\|_{0, p}\left\|u_{k}\right\|_{1, p}+ \\
&+\left\|u_{k}-u\right\|_{1, p}\left\|D_{i} v\right\|_{0, q}\left\|v_{k}-v\right\|_{1, q}\left\|u_{k}\right\|_{1, p}+\left\|u_{k}-u\right\|_{1, p}\|v\|_{1, a}
\end{aligned}
$$

then from (1.7) it follows that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\left(v_{k} D_{\imath} u_{k}+u_{k} D_{\imath} v_{k}\right)-\left(v D_{i} u+u D_{i} v\right)\right\|_{0, r}=0 \tag{1.8}
\end{equation*}
$$

Using Holder's inequality we can immediately deduce from (1.8)
that

$$
\begin{aligned}
& \int_{\Omega}\left(v D_{i} u+u D_{i} v\right) \varphi d x+\int_{\Omega} u v D_{i} \varphi d x= \\
& =\lim _{k \rightarrow \infty}\left[\int_{\Omega}\left(v_{k} D_{i} u_{k}+u_{k} D_{i} v_{k}\right) \varphi d x+\int_{\Omega} u_{k} v_{k} D_{i} \varphi d x\right] \quad \forall \varphi \in \mathscr{D}(\Omega)
\end{aligned}
$$

whence

$$
\begin{equation*}
\int_{\Omega}\left(v D_{i} u+u D_{i} v\right) \varphi d x+\int_{\Omega} u v D_{i} \varphi d x=0 \quad \forall \varphi \in \mathfrak{D}(\Omega) \tag{1.9}
\end{equation*}
$$

because, being $D_{i}\left(u_{k} v_{k}\right)=v_{k} D_{i} u_{k}+u_{k} D_{i} v_{k}$, we have

$$
\int_{\Omega}\left(v_{k} D_{i} u+u_{k} D_{i} v_{k}\right) \varphi d x+\int_{\Omega} u_{k} v_{k} D_{i} \varphi d x=0
$$

Note that (1.9) means that

$$
v D_{i} u+u D_{i} v=D_{i}(u v)
$$

hence $D_{i}(u v) \in L^{r}(\Omega)$ because of (1.6). Moreover by (1.6) $u v$ belongs to $L^{r}(\Omega)$. Thus we conclude that $u v \in W^{1, r}(\Omega)$. Finally, from (1.5) we obtain

$$
\begin{aligned}
& \|u v\|_{1, r} \leqslant c_{3}\left(\|u v\|_{0, r}+\sum_{i=1}^{n}\left\|v D_{i} u+u D_{i} v\right\|_{0, r}\right) \leqslant \\
& \quad \leqslant c_{4}\left(\|u\|_{1, p}\|v\|_{1, q}\right)+\sum_{i=1}^{n}\left(\left\|D_{i} u\right\|_{0, p}\|v\|_{1, q}+\|u\|_{1, p}\left\|D_{i} v\right\|_{0, q}\right) \leqslant c_{5}\|u\|_{1, p}\|v\|_{1, q}
\end{aligned}
$$

where c_{3}, c_{4} and c_{5} are positive numbers independent of u and v.
As a second step of our induction argument, we now suppose that the statement of Theorem 1 is true for an $m(\geqslant 1)$ and we will prove that, consequently, it is true even when m is replaced by $m+1$. Accordingly, let p_{1}, q_{1}, r_{1} be real numbers $\geqslant 1$ such that $p_{1} \geqslant r_{1}, q_{1} \geqslant r_{1}$ and

$$
\begin{equation*}
\frac{m+1}{n}>\frac{1}{p_{1}}+\frac{1}{q_{1}}-\frac{1}{r_{1}} \tag{1.10}
\end{equation*}
$$

and let $u_{1} \in W^{m+1, p}(\Omega)$ and $v \in W^{m+1, q}(\Omega)$. If the volume of Ω is infinite we also suppose that

$$
\begin{equation*}
\frac{m}{n} \leqslant \frac{1}{p_{1}}+\frac{1}{q_{1}}-\frac{1}{r_{1}} \quad \text { in the case } p_{1} \neq r_{1} \neq q_{1} \tag{1.11}
\end{equation*}
$$

that $(m+1) p_{1} \leqslant n$ in the case $q_{1} \neq r_{1}$ and that $(m+1) q_{1} \leqslant n$ in the case $p_{1} \neq r_{1}$.

We begin by considering the case when $m p_{1} \leqslant n$ and $m q_{1} \leqslant n$, with $m>1$. We set

$$
\tilde{p}_{1}=\frac{n p_{1}}{n-p_{1}} \quad \text { and } \quad \tilde{q}_{1}=\frac{n q_{1}}{n-q_{1}}
$$

By the Sobolev imbedding theorem, under our hypotheses, we have

$$
u \in W^{m, \tilde{p}_{1}}(\Omega), \quad v \in W^{m, \tilde{a}_{1}}(\Omega)
$$

besides

$$
D_{i} u \in W^{m, p_{1}}(\Omega), \quad D_{i} v \in W^{m, q_{1}}(\Omega), \quad(i=1, \ldots, n)
$$

Remark that, since

$$
\begin{equation*}
\frac{1}{\tilde{p}_{1}}=\frac{1}{p_{1}}-\frac{1}{n} \quad \text { and } \quad \frac{1}{\tilde{q}_{1}}=\frac{1}{q_{1}}-\frac{1}{n} \tag{1.12}
\end{equation*}
$$

(1.10) implies

$$
\begin{equation*}
\frac{m}{n}>\frac{1}{\tilde{p}_{1}}+\frac{1}{q_{1}}-\frac{1}{r_{1}} \quad \text { and } \quad \frac{m}{n}>\frac{1}{p_{1}}+\frac{1}{\tilde{q}_{1}}-\frac{1}{r_{1}} \tag{1.13}
\end{equation*}
$$

If the volume of Ω is finite, this suffices to deduces (via the induction hypothesis) that

$$
v D_{i} u \in W^{m, r_{1}}(\Omega), \quad u D_{i} v \in W^{m, r_{1}}(\Omega)
$$

and that

$$
\begin{equation*}
\left\|v D_{i} u\right\|_{m, r_{1}} \leqslant c_{6}\|v\|_{m, \tilde{a}_{1}}\left\|D_{i} u\right\|_{m, p_{1}},\left\|u D_{i} v\right\|_{m, r_{1}} \leqslant c_{6}\|u\|_{m, \tilde{p}_{1}}\left\|D_{i} v\right\|_{m, a_{1}} \tag{1.14}
\end{equation*}
$$

where c_{6} is a positive number independent of u, v and i; then, in view of the Sobolev imbedding theorem, there exists a positive number c_{7} independent of u, v and i such that

$$
\begin{equation*}
\left\|v D_{i} u\right\|_{m, r_{1}} \leqslant c_{7}\|u\|_{m+1, p_{1}}\|v\|_{m+1, q_{1}}, \quad\left\|u D_{i} v\right\|_{m, r_{1}} \leqslant c_{7}\|u\|_{m+1, p_{1}}\|v\|_{m_{+1, q_{1}}} . \tag{1.15}
\end{equation*}
$$

If the volume of Ω is infinite, it is not difficult to realize that our assumptions imply that

$$
\begin{equation*}
\frac{m-1}{n} \leqslant \frac{1}{\tilde{p}_{1}}+\frac{1}{q_{1}}-\frac{1}{r_{1}} \quad \text { and } \quad \frac{m-1}{n} \leqslant \frac{1}{p_{1}}+\frac{1}{\tilde{q}_{1}}-\frac{1}{r_{1}} . \tag{1.16}
\end{equation*}
$$

Indeed, by (1.12) each of the conditions (1.16) is equivalent to (1.11) and therefore (1.16) holds if $p_{i} \neq r_{1} \neq q_{1}$; moreover (1.16) also holds if $p_{1}=r_{1}$ and if $q_{1}=r_{1}$, because (1.11) becomes $m q_{1} \leqslant n$ if $p_{1}=r_{1}$ and becomes $m q_{1} \leqslant n$ if $q_{1}=r_{1}$.

Furthermore, since $m \tilde{p}_{1}=(m+1) p_{1}$ and $m \tilde{q}_{1}=(m+1) q_{1}$, if the volume of Ω is infinite we have $m \tilde{p}_{1} \leqslant n$ in the case $q_{1} \neq r_{1}$ and $m \tilde{q}_{1} \leqslant n$ in the case $p_{1} \neq r_{1}$.

Therefore, by the induction hypothesis, estimates (1.15), and consequently (1.16), are true even when the volume of Ω is infinite.

By an analogous way as we obtained (1.15) we can show that $u v \in W^{m, r_{1}}(\Omega)$ and that a positive number c_{8} independent of u and v exists such that

$$
\begin{equation*}
\|u v\|_{m, r_{1}} \leqslant c_{8}\|u\|_{m+1, p_{1}}\|v\|_{m+1, q_{1}} \tag{1.17}
\end{equation*}
$$

We now prove that estimates (1.15) and (1.17) hold also in the four cases: $m p_{1}>n, m q_{1}>n, p_{1}=n$ with $m=1$ and $q_{1}=n$ with $m=1$.

If $m p_{1}>n$ or $m q_{1}>n$ it is easily seen that all hypotheses of the statement of Theorem 1 are satisfied, so that (by the induction assumption) multiplication is a continuous operator from $W^{m, p_{1}}(\Omega) \times W^{m, q_{1}}(\Omega)$ to $W^{m, r_{1}}(\Omega)$. This is obvious if the volume of Ω is finite; if the volume of Ω is infinite we need only remark that, if $m p_{1}>n$ [resp. $m q_{1}>n$], then $q_{1}=r_{1}$ [resp. $p_{1}=r_{1}$].

Let now $p_{1}=n$ [resp. $q_{1}=n$] and $m=1$. If the volume of Ω is finite it may occurs that $q_{1}>r_{1}$ [resp. $p_{1}>r_{1}$]: in this case all hypotheses of the statement of Theorem 1 are again satisfied. If the volume of Ω is infinite we have $q_{1}=r_{1}$ [resp. $p_{1}=r_{1}$]. Note that, in the case when $p_{1}=n, q_{1}=r_{1}\left[\operatorname{resp} . q_{1}=n, p_{1}=r_{1}\right]$ and $m=1$, the hypotheses
of the statement of Theorem 1 are satisfied provided p_{1} [resp. q_{1}] is replaced by $\tilde{p}_{1}\left[\operatorname{resp} . \tilde{q}_{1}\right]$, where $\tilde{p}_{1}\left[\operatorname{resp} . \tilde{q}_{1}\right]$ is any number $>p_{1}\left[\operatorname{resp} .>q_{1}\right]$. Thus, recalling that (by the Sobolev imbedding theorem) $W^{2, p_{1}}(\Omega)$ [resp. $W^{2, q_{1}}(\Omega)$] can be continuously imbedded into $W^{1, \tilde{p}_{1}}(\Omega)$ [resp. $\left.W^{1, \bar{q}_{1}}(\Omega)\right]$, from the induction hypothesis we get that, if $p_{1}=n$ [resp. $\left.q_{1}=n\right]$, then multiplication is a continuous operator from $W^{2, p_{1}}(\Omega) \times$ $\times W^{1, q_{1}}(\Omega)\left[r e s p . W^{1, p_{1}}(\Omega) \times W^{2, q_{1}}(\Omega)\right]$ to $W^{1, r_{1}}(\Omega)$.

This evidently shows what we wanted: that (1.15) and (1.17) are true also in the four cases $m p_{1}>n, m q_{1}>n, p_{1}=n$ with $m=1$, and $q_{1}=n$ with $m=1$.

Now, using the density of $C^{\infty}(\Omega) \cap W^{m, s}(\Omega)$ in $W^{m, s}(\Omega), 1 \leqslant s \in \mathbf{R}$, we can deduce, by a procedure quite analogous to the one developed in the first step, that $D_{i}(u v)=v D_{i} u+u D_{i} v$. Then, in view of (1.15) and (1.17), we can conclude that $u v \in W^{m+1, r_{1}}(\Omega)$ and that $\|u v\|_{m+1, r_{1}} \leqslant c_{9}\|u\|_{m+1, p_{1}}\|v\|_{m+1, q_{1}}$, where c_{9} is a positive number independent of u and v. Thus the induction argument is complete.

2. A property of the Nemytsky operator.

Let N be an integer $\geqslant 1$ and let $(x, y) \mapsto f(x, y)$ be a real function defined in $\Omega \times \mathbb{R}^{N}$. For any function $\sigma: \Omega \rightarrow \mathbb{R}^{N}$ let $\boldsymbol{F}(\sigma): \Omega \rightarrow \mathbb{R}$ be the function defined by setting

$$
\begin{equation*}
F(\sigma)(x)=f(x, \sigma(x)), \quad x \in \Omega \tag{2.1}
\end{equation*}
$$

We will denote by $C^{m}\left(\bar{\Omega} \times \mathbb{R}^{N}\right)$ the set of real functions defined in $\Omega \times \mathbb{R}^{N}$ which are restrictions to $\Omega \times \mathbb{R}^{N}$ of some \boldsymbol{C}^{m}-function of $\mathbb{R}^{n} \times \mathbb{R}^{N}$ into \mathbb{R}.

Theorem 2. Assume that Ω is bounded and has the cone property, that $f \in C^{m}\left(\bar{\Omega} \times \mathbb{R}^{N}\right)$ and that $m p>n$. Then $\sigma \mapsto \boldsymbol{F}(\sigma)$ is a continuous operator of $\left(W^{m, p}(\Omega)\right)^{N}$ into $W^{m, p}(\Omega)$.

Proof (by induction on m). We denote by $F_{x_{i}}(\sigma)$ and $F_{y_{j}}(\sigma)$, $(i=1, \ldots, n ; j=1, \ldots, N)$, the real functions defined in Ω by setting

$$
F_{x_{i}}(\sigma)(x)=\frac{\partial f}{\partial x_{i}}(x, \sigma(x)), \quad F_{y_{j}}(\sigma)(x)=\frac{\partial f}{\partial y_{j}}(x, \sigma(x))
$$

We begin with the case $m=1$. Accordingly, let $f \in C^{1}\left(\bar{\Omega} \times \mathbb{R}^{N}\right)$ and
$p>n$. By the Sobolev imbedding theorem each $v \in W^{1, p}(\Omega)$ is an equivalence class of functions containing a continuous and bounded function, which we still denote by v, and there exists a positive number $c_{1, p}$ independent of v such that

$$
\begin{equation*}
\|v\|_{0, \infty} \leqslant c_{1, p}\|v\|_{1, p} \quad \forall v \in W^{1, p}(\Omega) \tag{2.2}
\end{equation*}
$$

where $\|\cdot\|_{0, \infty}$ is the norm of $L^{\infty}(\Omega)$. Then, if $\sigma \in\left(W^{1, p}(\Omega)\right)^{N}$, the equivalence classes $F(\sigma), F_{x_{i}}(\sigma)$ and $F_{y_{j}}(\sigma)$ can be identified with continuous and bounded functions. Let $\sigma=\left(\sigma_{j}\right)_{j=1, \ldots, N} \in\left(W^{1, p}(\Omega)\right)^{N}$ and let $\left(\sigma^{k}\right)_{k \in \mathbf{N}}$ be a sequence in $\left(C^{\infty}(\Omega) \cap W^{1, p}(\Omega)\right)^{N}$ which converges to σ in $\left(W^{1, p}(\Omega)\right)^{N}$, and therefore by (2.2) in $\left(L^{\infty}(\Omega)\right)^{N}$. We have

$$
\begin{equation*}
D_{i} F\left(\sigma^{k}\right)=F_{x_{i}}\left(\sigma^{k}\right)+\sum_{j=1}^{N} F_{y_{j}}\left(\sigma^{k}\right) D_{i} \sigma_{j}^{k} \tag{2.3}
\end{equation*}
$$

Since $\left(\sigma^{k}\right)_{k \in \mathbf{N}}$ converges to σ in $\left(L^{\infty}(\Omega)\right)^{N}$, then $\left(F\left(\sigma^{k}\right)\right)_{k \in \mathbf{N}},\left(F_{x_{i}}\left(\sigma^{k}\right)\right)_{k \in \mathbf{N}}$ and $\left(F_{y_{j}}\left(\sigma^{k}\right)\right)_{k \in \mathrm{~N}}$ converge in $L^{\infty}(\Omega)$ respectively to $F(\sigma), F_{x_{i}}(\sigma)$ and $F_{y_{j}}(\sigma)$, and therefore $\left(F_{x_{i}}\left(\sigma^{k}\right)+\sum_{j=1}^{N} F_{y_{j}}\left(\sigma^{k}\right) D_{i} \sigma_{j}^{k}\right)_{k \in \mathbf{N}}$ converges in $L^{p}(\Omega)$ to $\boldsymbol{F}_{x_{i}}(\sigma)+\sum_{j=1}^{N} \boldsymbol{F}_{y_{j}}(\sigma) D_{i} \sigma_{j}$. Consequently, by Hölder's inequality we have, for any $\varphi \in \mathscr{D}(\Omega)$,

$$
\begin{align*}
& \int_{\Omega}\left(F_{x_{i}}(\sigma)+\sum_{j=1}^{N} F_{y_{j}}(\sigma) D_{i} \sigma_{j}\right) \varphi d x+\int_{\Omega} F(\sigma) D_{i} \varphi d x= \tag{2.4}\\
& \quad=\lim _{k \rightarrow \infty}\left[\int_{\Omega}\left(F_{x_{i}}\left(\sigma^{k}\right)+\sum_{j=1}^{N} F_{y_{j}}\left(\sigma^{k}\right) D_{i} \sigma_{j}^{k}\right) \varphi d x+\int_{\Omega} F\left(\sigma^{k}\right) D_{\imath} \varphi d x\right] .
\end{align*}
$$

Because of (2.3) we have for any $k \in \mathbf{N}$ and any $\varphi \in \mathscr{D}(\Omega)$

$$
\int_{\Omega}\left(F_{x_{i}}\left(\sigma^{k}\right)+\sum_{j=1}^{N} F_{y_{j}}\left(\sigma^{k}\right) D_{\imath} \sigma_{j}^{k}\right) \varphi d x+\int_{\Omega} F\left(\sigma^{k}\right) D_{\imath} \varphi d x=0
$$

and therefore, by (2.4), we obtain

$$
\int_{\Omega}\left(F_{x_{i}}(\sigma)+\sum_{j=1}^{N} F_{v_{j}}(\sigma) D_{i} \sigma_{j}\right) \varphi d x+\int_{\Omega} F(\sigma) D_{i} \varphi d x=0 \quad \forall \varphi \in \mathscr{D}(\Omega)
$$

which means

$$
\begin{equation*}
D_{i} F(\sigma)=F_{x_{i}}(\sigma)+\sum_{j=1}^{N} F_{y_{j}}(\sigma) D_{i} \sigma_{j} \tag{2.5}
\end{equation*}
$$

Since the equivalence classes $F(\sigma), F_{x_{i}}(\sigma)$ and $F_{y_{j}}(\sigma)$ contain a continuous and bounded function, from (2.5) if follows that $F^{\prime}(\sigma) \in W^{1, p}(\Omega)$.

To prove that $F:\left(W^{1, p}(\Omega)\right)^{N} \rightarrow W^{1, p}(\Omega)$ is continuous we need only remark that, if a sequence $\left(\sigma^{k}\right)_{k \in \mathbf{N}}$ converges to σ in $\left(W^{1, p}(\Omega)\right)^{N}$, then, by $(2.2),\left(\sigma^{k}\right)_{k \in \mathrm{~N}}$ converges to σ in $\left(L^{\infty}(\Omega)\right)^{N}$, and therefore the sequences $\left(F\left(\sigma^{k}\right)\right)_{k \in \mathbf{N}},\left(F_{x_{i}}\left(\sigma^{k}\right)\right)_{k \in \mathbf{N}}$ and $\left(F_{y_{j}}\left(\sigma^{k}\right)\right)_{k \in \mathbf{N}}$ converge in $L^{\infty}(\Omega)$ respectively to $F^{\prime}(\sigma), F_{x_{i}}(\sigma)$ and $F_{y_{j}}(\sigma)$: then $\left(D_{i} F\left(\sigma^{k}\right)\right)_{k \in \mathrm{~N}}$ converges to $D_{i} F(\sigma)$ in $L^{p}(\Omega)$ in view of (2.5), and thus $\left(F\left(\sigma^{k}\right)\right)_{k \in \mathbf{N}}$ converges to $\boldsymbol{F}^{\prime}(\sigma)$ in $W^{1, p}(\Omega)$.

As a next step, we suppose that the statement of the theorem is true for an $m \geqslant 1$ and we show that, consequently, it holds when m is replaced by $m+1$. In order to do this, we assume that $f \in C^{m+1}(\bar{\Omega} \times$ $\left.\times \mathbf{R}^{N}\right)$, that $(m+1) p>n$ and that $\sigma \in\left(W^{m+1, p}(\Omega)\right)^{N}$, and we prove that $F(\sigma) \in W^{m+1, p}(\Omega)$ and that $\sigma \mapsto F(\sigma)$ is a continuous operator from $\left(W^{m+1, p}(\Omega)\right)^{N}$ to $W^{m+1, p}(\Omega)$.

Let us recall that (by the Sobolev imbedding theorem) each $v \in W^{m+1, p}(\Omega)$ can be indentified with a continuous function and there is a positive number $c_{m+1, p}$ independent of v such that $\|v\|_{0, \infty} \leqslant c_{m+1, p}\|v\|_{m+1, p}$ $\forall v \in W^{m+1, p}(\Omega)$. Then, by arguments quite similar to the ones given in the case $m=1$, we can show that F is a continuous operator from $\left(W^{m+1, p}(\Omega)\right)^{N}$ to $W^{1, p}(\Omega)$ and that (2.5) holds.

It is now convenient to distinguish the cases $p>n, p=n$ and $p<n$.

If $p>n$, from the (induction) assumption it follows that $\boldsymbol{F}_{x_{i}}$ and \boldsymbol{F}_{y} are continuous operators of $\left(W^{m, p}(\Omega)\right)^{N}$ into $W^{m, p}(\Omega)$; therefore F is a continuous operator of $\left(W^{m+1, p}(\Omega)\right)^{N}$ into $W^{m+1, p}(\Omega)$, in view of (2.5), because $W^{m, p}(\Omega)$ is a Banach algebra.

Let now $p=n$, and let $q \in \mathbb{R}$ be such that $n<q$. Thus $m q>n$ $\forall m \geqslant 1$ and (by the Sobolev imbedding theorem) $W^{m+1, n}(\Omega)$ can be continuously imbedded into $W^{m, q}(\Omega)$; furthermore, by the (induction) assumption, $F_{x_{i}}$ and F_{y} are continuous operators of $\left(W^{m, q}(\Omega)\right)^{N}$ into $W^{m, q}(\Omega)$.

Note that, since $m q>n$, from Theorem 1 it follows that the pointwise multiplication is a continuous operator of $W^{m, n}(\Omega) \times W^{m, q}(\Omega)$ into $W^{m, n}(\Omega)$. Then we can deduce by (2.5) that $\sigma \mapsto D_{i} F(\sigma)$ is a continuous operator of $\left(W^{m+1, n}(\Omega)\right)^{N}$ into $W^{m, n}(\Omega)$. Consequently
$\sigma \mapsto \boldsymbol{F}^{\prime}(\sigma)$ is a continuous operator of $\left(W^{m+1, n}(\Omega)\right)^{N}$ into $W^{m+1, n}(\Omega)$.
Finally, let us consider the case $p<n$. In this case the condition $(m+1) p>n$ is equivalent to the condition

$$
m \frac{n p}{n-p}>n
$$

Now: $F_{x_{i}}$ and $F_{y_{j}}$ are continuous operators of $\left(W^{m, n p /(n-p)}(\Omega)\right)^{N}$ into $W^{m, n p /(n-p)}(\Omega)$ (because of the induction hypothesis), $W^{m+1, p}(\Omega)$ can be continuously imbedded into $W^{m, n p /(n-p)}(\Omega)$ (by the Sobolev imbedding theorem), and the pointwise multiplication is a continuous operator of $W^{m, p}(\Omega) \times W^{m, n p /(n-p)}(\Omega)$ into $W^{m, p}(\Omega)$ (by Theorem 1). This implies, by (2.5), that $\sigma \mapsto D_{i} F(\sigma)$ is a continuous operator of $\left(W^{m+1, p}(\Omega)\right)^{N}$ into $W^{m, p}(\Omega)$. Therefore, also in this case $\sigma \mapsto F(\sigma)$ is a continuous operator of $\left(W^{m+1, p}(\Omega)\right)^{N}$ into $W^{m+1, p}(\Omega)$.

REFERENCES

[1] A. Adams, Sobolev Spaces, Academic Press, 1975.
[2] T. Valent, Teoremi di esistenza e unicitá in elastostatica finita, Rend. Sem. Mat. Univ. Padova, 60 (1979), pp. 165-181.

Manoscritto pervenuto in redazione il 15 giugno 1984.

